Automatic search for failed eruptions in SDO/AIA observations.

T.Mrozek, D. Gronkiewicz

Why failed eruptions?

- Space weather
- Interaction between magnetic structures
- Particle acceleration in interaction region
- Stellar CMEs

AR12192, flare-rich and CME-poor

Sun, X., et al. 2015, ApJ 804, L28 Thalmann, J.K., et al. 2015, ApJ 801, L23

Triggering mechanisms

Chen, P. 2011, Living Rev. Solar Phys, 8, 1

Braking mechanisms

Zbyt silne więzy (confining tether)

Vrsnak, B. 1990, Solar Phys. 129, 295

Niestabilność wyboczeniowa (kink/toroidal instability)

Ji, H. i in. 2003, ApJ, 595, L135

Wypływ pola (flux emergence)

Archontis, V., et al. 2007, A&A 466, 367

Zderzenie z barierą (barrier collision)

Amari, T., & Luciani, J.F. 1999, ApJ 515, L81

Which mechanism?

Which mechanism?

Which mechanism?

The aim

To construct method for authomatic selection of eruptive/moving features on the basis of SDO/AIA observations.

Human or machine?

- "by hand" searching subjective
- croudsourcing extremely effective (galaxy zoo, Kepler lightcurves)
- machine do not discover new events
- new methods of machine learning

SDO/AIA

AIA wavelength channel	Source	Characteristic temperature			
White light	continuum	5000 K			
170 nm	continuum	5000 K			
30.4 nm	He II	50,000 K			
160 nm	C IV + continuum	10 ⁵ & 5000 K			
17.1 nm	Fe IX	6.3×10⁵ K			
19.3 nm	Fe XII, XXIV	1.2×10 ⁶ & 2x10 ⁷ K			
21.1 nm	Fe XIV	2×10 ⁶ K			
33.5 nm	Fe XVI	2.5×10 ⁶ K			
9.4 nm	Fe XVIII	6.3×10 ⁶ K			
13.1 nm	Fe VIII, XX, XXIII	4×10 ⁵ , 10 ⁷ & 1.6×10 ⁷ K			

- 4 telescopes
- 4096 by 4096 full-disk images (0.6 arcsec/pixel)
- 12 s cadence
- 1.5 TB of data/day basic problem for downloading and analysing data with automathic method

AIA - data products

One uncompressed image (Lev.1) – 32 MB

Lev.1.5 – after AIA_prep (pointing correction, exp. normalization)

Synoptic – Lev.1.5 compressed to 1024x1024 pix., 2 min. cadence – suitable for searching of moving structures, 1 MB/image

171 Å synoptic images have been selected for eruption searching

First step – data cube preparation

- 3 h-long series of synoptic data.
- Elimination of NaN pixels and empty images (dark frames) – removed pixels and frames were replaced with the ones obtained using the CONVOL function
- Last step is to blur images with gaussian filter (FWHM=2.8 pix)

Standard approach – differential images

Most variable are brightest features.

It means that using derivative only will lead to detection of all bright features (loops, active regions) which is not our aim.

Moving feature with initial brightness distribution R(x,y).

Its brightness is modulated with time by $\varphi(t)$.

Starting position (x_0, y_0) is moving with velocity (v_x, v_y) . Then brightness may be represented with:

$$I(x, y, t) = R(x - x_{0,y} - y_{0})\varphi(t) = I_{0}(x, y)\varphi(t)$$

Differential image:

$$I_t = \frac{dI(x, y, t)}{dt} = -\varphi(t) \cdot (\vec{v} \circ \nabla I_0) + I_0 \frac{d\varphi(t)}{dt}$$

change of position

change of brightness

Let's look at two cases:

1. Stationary flare (v = 0). Characteristic change rate is $\tau^{-1} = \frac{d}{dt} (\ln \varphi)$ then:

$$I_t = I \frac{d \ln \varphi}{dt} = I \tau^{-1}$$

$$\log I_t = \log I - \log \tau$$

2. No changes of brigthness $\left(I_0 \frac{d\phi(t)}{dt} = 0\right)$. We obtain: $I_t = -\vec{v} \cdot \nabla I$ which is a continuity equation $\left(\frac{d\rho}{dt} + \nabla \cdot \vec{j} = 0\right)$ for uniform velocity field.

In practice for $I \rightarrow 0$ we get $I_t \neq 0$ due to noise. Therefore we add a constant value:

$$I_t^{norm} = \tau_{\alpha}^{-1} = \frac{I_t}{I + \alpha}$$

Operating on discrete values may produce uncertainties, therefore, for calculating derivative of normalized I, we use:

$$J(x, y, t) = \ln(I(x, y, t) + \alpha) - \ln \alpha$$
$$J_t = \frac{dJ}{dt} = \frac{d}{dt} (\ln(I + \alpha) - \ln \alpha) = \frac{dI}{dt} \frac{1}{I + \alpha} = \frac{I_t}{I + \alpha}$$
$$J_{tt} = \frac{d^2 J}{dt^2} = \frac{d}{dt} \left(\frac{I_t}{I + \alpha}\right) = \frac{d^2 I}{dt^2} \frac{1}{I + \alpha} - \left(\frac{I_t}{I + \alpha}\right)^2 = \frac{I_{tt}}{1 + \alpha} - J_t^2$$

Finally, we can calculate derivatives:

$$I_t^{norm} = \frac{I_t}{I + \alpha} = J_t \qquad \qquad I_{tt}^{norm} = \frac{I_{tt}}{I + \alpha} = J_{tt} + J_t^2$$

 $\frac{I_t}{I+\alpha}$

 I_t

For next step we constructed (arbitrarily) a variablility index which was used to separate slow- and fastchanging structures:

 $V = \left| J_t^2 + \frac{1}{4} J_{tt}^2 \right|^2$

Searching for eruptive events

Defined value V may be used for eruptive events selection however it can't be done with one threshold value because it varies with solar cycle, location on the disk etc.

For this purpose we used Bayes theorem:

$$P(C_{n}|x) = \frac{P(x, C_{n})}{P(x)} = \frac{P(x|C_{n})P(C_{n})}{\sum_{i=0}^{N} P(x|C_{i})P(C_{i})}$$

We have measured value x, which we want to classify as one of C_i . We know probability of measuring x belonging to class C_i (P(x|C_i)) and global probability of occurrence of each class.

In our problem of image analysis we defined two classes: E (eruptive), and Q (quiet). On the basis of measured state of each pixel $\hat{x} = (I, V)$ we want to classify it to one of classes E or Q.

Searching for eruptive events

In theory we know $P(\hat{x}, E)$ and $P(\hat{x}, Q)$, so measuring \hat{x} we can calculate $P(E|\hat{x})$ and $P(Q|\hat{x})$ immediately, and assign class.

However, in practice, we do not know probability $P(\hat{x}, E)$, but we can estimate $P(\hat{x}|Q)$ assuming that several images in sequence do not contain eruptions.

For this purpose we used mean values of pixel brightness $(I_{mean}(t))$ and variablility index $(V_{mean}(t))$:

$$I_{mean}(t_k) = \frac{1}{n_x n_y} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} I(x_i, y_j, t_k)$$

$$V_{mean}(t_k) = \frac{1}{n_x n_y} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} V(x_i, y_j, t_k)$$

Searching for eruptive events

We defined activity index (A(t_i)) as a weighted sum (w=8):

$$A(t_{i}) = \frac{I_{mean}(t_{k}) - \overline{I_{mean}}}{\sigma_{I_{mean}}} + w \frac{V_{mean}(t_{k}) - \overline{V_{mean}}}{\sigma_{V_{mean}}}$$

20% of frames with lowest values of A(t_i) were used for estimation of $P(\hat{x}|Q)$. We can calculate:

$$P(\hat{x}, E) \approx P(\hat{x}) - P(\hat{x}, Q) = P(\hat{x}) - P(\hat{x}|Q)P(Q)$$

where $P(\hat{x})$ is normalized distribution of $\hat{x} = (I, V)$ for entire sequence of images.

P(Q), which is probability that randomly selected pixel belong to class "no eruption", was calculated iteratively as follows. Let's assume that $P(Q) \approx 1$, and classify pixels as Q or E. Having number of E-pixels we calculate $P(Q) = 1 - P(E) = 1 - \frac{n_{erupt}}{n_{total}}$, and run algorithm again with new value of P(Q). Usually, after 3 steps P(Q) had stabilized.

Finally, we can calculate probability that pixel of state $\hat{x} = (I, V)$ belongs to class E:

$$P(E|\hat{x}) = \frac{P(\hat{x}, E)}{P(\hat{x})} = \frac{P(\hat{x}) - P(\hat{x}, Q)}{P(\hat{x})} = 1 - \frac{P(Q)P(\hat{x}|Q)}{P(\hat{x})}$$

Algorithm

Algorithm

E-pixels were searched within frames of various size to avoid edge effects.

Area of eruption was calculated with simplest growth algorithm.

Possible eruption was recognized when selected area:

- 1. for each pixel: $P(E|\hat{x}) > 0.35$
- 2. was visible on 8 or more frames consecutive frames
- was greater than 600 arcsec² on at least one frame
- mean value of brightness was above 30
 DN on at least one frame
- 5. showed change of centroid position greater than 25 arcsec.

Example

Example

Example

Output

30-May-12 01:46:12.340

Output

Pole	Typ danych	Jednostka	Opis		Pole	Typ danych	Jednostka	Opis
ID	LONG	-	(nie używany)		H_BOTTOM	FLOAT[80]	arcsec	Odległość spodu erupcji od miejsca
T_START	DOUBLE	sekundy	Czas początku zjawiska (w formacie					startu mierzona wzdłuż prostej wy-
T END	DOUBLE	sekundy	Cras końca ziawiska (w formacia					znaczającej sredni kierunek rucnu erupcji
1_12(1)	DOOBLE	Sekuluy	anytim)		H_TRAJECT_2	FLOAT[3]		Współczynniki wielomianiu dru-
T_PEAK	DOUBLE	sekundy	Czas osiągnięcia największej po- wierzchni (w formacie anytim)			[-]		giego stopnia dopasowanego do trajektorii geometrycznego środka
DURATION	FLOAT	sekundy	Czas trwania zjawiska					masy (H_CENTER)
WAVE	LONG	A	Długość fali filtra SDO/AIA w któ- rym zarejestrowano zjawisko		H_TRAJECT_3	FLOAT[4]		Współczynniki wielomianiu trze- ciego stopnia dopasowanego do
N_POINTS	LONG	-	Liczba obrazów, na których zareje- strowano zjawisko					trajektorii geometrycznego środka masy (H_CENTER)
MASK	BYTE[80]	-	Tablica, w której pierwsze N_POINTS elementów ma war-		X_VERSOR	FLOAT	-	Składowa X wersora wyznaczają- cego średni kierunek ruchu erupcji
MASK_SEQ	BYTE[80]	-	tosc 1, zas pozostałe 0 (nie używany)		Y_VERSOR	FLOAT	-	Składowa Y wersora wyznaczają- cego średni kierunek ruchu erupcji
TIMES	DOUBLE[80]	sekundy	Czasy rejestracji poszczególnych ob- razów (w formacie anytim)		AREA	FLOAT[80]	$ m arcsec^2$	Powierzchnia kątowa zajmowana przez erupcję
X_CENTER	FLOAT[80]	arcsec	Położenie geometrycznego środka masy obszaru erupcji w osi X		AREA_M	FLOAT	$ m arcsec^2$	Średnia powierzchnia kątowa erup- cji
X_CENTER_M	FLOAT	arcsec	Uśrednione położenie środka masy obszaru erupcji w osi X		AREA_X	FLOAT	arcsec^2	, Maksymalna powierzchnia kątowa osiagnieta przez erupcie
X_START	FLOAT	arcsec	Współrzędna X miejsca startu erup- cji		INTENS	FLOAT[80]	DN	Średnie natężenie sygnału w obsza- rze erupcji
Y_CENTER.	FLOAT[80]	arcsec	Położenie środka masy obszaru erupcji w osi X		INTENS_M	FLOAT	DN	Średnie natężenie sygnału podczas
Y_CENTER_M	FLOAT	arcsec	Uśrednione położenie środka masy obszaru erupcji w osi Y		INTENS_X	FLOAT	DN	Maksymalne natężenie sygnału osią-
Y_START	FLOAT	arcsec	Współrzędna Y miejsca startu erup-		DIDE	THO ATTION	DN	gnięte w obszarze erupcji
IS FRUPTION	INT	logiczna	CJI Czy zjawisko jest erupcja? (pje uży.		DIFF_T	FLOAT[80]	DN	Srednia wartosc obrazu roznicowego w obszarze erupcii
io_inter from		logiczna	wany – zawsze true)		N_DIFF_T	FLOAT[80]	-	Średnia wartość znormalizowanego
H_FRONT	FLOAT[80]	arcsec	Odległość frontu erupcji od miejsca startu mierzona wzdłuż prostej wy-					obrazu różnicowego w obszarze erupcji – patrz wzór (3.11)
			znaczającej średni kierunek ruchu erupcji		F_VAR	FLOAT[80]	-	Średnia wartość wskaźnika zmienno- ści w obszarze erupcji – patrz wzór
H_CENTER.	FLOAT[80]	arcsec	Odległość geometrycznego środka					(<u>3.15</u>)
			masy obszaru erupcji od miejsca startu mierzona wzdłuż prostej wy-	1	F_VAR_M	FLOAT	-	Średnia wartość wskaźnika zmienno-
			znaczającej średni kierunek ruchu	1				ści w czasie trwania erupcji
			erupcji	2	NOTHING	INT	-	(nie używany)

Output

Results

1 APR 2012 – 1 JUL 2012

618 moving features recognized

Half of them were eruptions, surges, and flares

Classification was made by user. We did not use authomatic feature recognition.

Automatic height profile.

-

1

Automatic height profile.

POSITION -50 Eruption LOCATION 1500 29-Apr-12 15:00:13.340 -100 15:22:13.340 16:50:13.340 1000 center (x,y) frames: <u>5</u>6 1024, -106 500 -150 - 6 -500 -200 -1000 -1500 L -250900 1050 -1500-1000 -500 500 1000 1500 850 950 1000 1100 0 AREA HEIGHT INTENSITY 3×10⁴ 1500 300 2×10⁺ 1000 200 1×10+ 500 100 $+ \sim \sim$ 01 1 1 1 0 1 1 1 1 1 1 0 15:00 15:20 15:40 16:00 18:20 16:40 17:00 Stort Time (29-Apr-12 14:46:40) 15:20 15:40 16:00 16:20 Start Time (29-Apr-12 14:46:40) 15:20 15:40 16:00 16:20 Start Time (29-Apr-12 14:46:40) 15:00 16:40 17:0D 15:00 16:40 17:0D

Automatic height profile.

Automatic height profile. Bad case.

Automatic height profile. Bad case.

Automatic height profile. Bad case.

Automatic classification. Failed.

Low signal. Event lost.

200

100

150

Main problems with automatic classification of events:

- Detection threshold.
 Very important for ondisk-events.
- Escaping from field of view false failed eruption detection.
- 3. Oscillating loops.
- 4. Events blending.
- 5. Simultaneous eruptions.

The method is very effective for recognition of moving features but next steps have to be done "by hand"

Few more remarks & summary

- New algorithm was constructed, and used for SDO/AIA 171 Å observations
- More effective than algorith described by Hurlburt, N. 2015 (arXiv:1504.03395) and Hurlburt, N. & Jaffey, S. 2015 (arXiv:1504.04660)
- Very effective for large, diffuse structures visible on the edge of AIA's field of view.
- Algorithm is very slow (3 hours of observations are analysed in 1 hour on personal computer) due to:
 - slow data transfer, unstable connection with JSOC server
 - last step (searching for pixels with $P(E|\hat{x}) > 0.35$) was very time-consuming
 - growth algorithm
- Usefull for preliminary data search. Next steps events classification, parameters – have to be done by user.

Hurlburt

Optical flow method

Problem klasyfikacji zjawisk

- **Coronal transients.** A general term for short-time-scale changes in the corona. Includes CMEs.
- Active dark filament (ADF). A filament displaying motion or changes in shape, location, or absorption characteristics.
- Active prominence. A prominence above the solar limb moving and changing in appearance over a few minutes of time.
- **Bright surge on the disk (BSD).** A bright stream of gas seen against the solar disk. BSDs are often flare related and commonly fan out from the flare site.
- **Bright surge on the limb (BSL).** A bright stream of gas emanating from the chromosphere that moves outward more than 0.15 solar radius above the limb. It may decelerate and return to the Sun. Most BSLs assume a linear radial shape but can be inclined and/or fan shaped.
- **Dark surge on the disk (DSD).** Dark gaseous ejections on the Sun visible in Ha. They usually originate from small subflare-like brightenings. Material is usually seen to be ejected, then decelerate at a gravitational rate, and to flow back to the point of origin. DSDs can occur intermittently for days from an active region.
- **Disappearing solar filament (DSF).** A solar filament that disappears suddenly on a timescale of minutes to hours. The prominence material is often seen to ascend but can fall into the Sun or just fade. DSFs are probable indicators of coronal mass ejections.
- **Eruptive prominence on limb (EPL).** A solar prominence that becomes activated and is seen to ascend away from the Sun; sometimes associated with a coronal mass ejection.
- Spray (SPY). Luminous material ejected from a solar flare with sufficient velocity to escape the Sun (675 km/s).
 Sprays are usually seen in H-alpha with complex and rapidly changing form. There is little evidence that sprays are focused by magnetic fields.
- **Surge.** A jet of material from active regions that reaches coronal heights and then either fades or returns into the chromosphere along the trajectory of ascent. Surges typically last 10 to 20 minutes and tend to recur at a rate of approximately 1 per hour. Surges are linear and collimated in form, as if highly directed by magnetic fields.