Twarde rentgenowskie Słońce z bliska: przyrząd STIX na pokładzie sondy Solar Orbiter

> Tomasz Mrozek Instytut Astronomiczny, UWr Zakład Fizyki Słońca, CBK PAN

ESA Cosmic Vision (2015-2025)

- Jakie są warunki formowania planet i powstawania życia?
- Jak działa Układ Słoneczny?
- Jakie są fundamentalne prawa fizyki we Wszechświecie?
- Jak powstał Wszechświat i z czego jest zbudowany?

Đúżadnisjan(E)ekosżt-poniżej 900M€, wystrzeleniews2020ne przez ESA

kandydaci:(M1,M2): Euclid – ciemna materia i energia Europa Jupiter/System Mission/Laplace egwiazd badanie układu księżyców Jowisza (współnie z NASA)ków fizycznych in-situ w koronie LISA - obserwatorium faligrawitacyjnych (wspólnie z NASA) IXO (wcześnie) XEUS) – międzynarodowe obserwatorium X/ (współnie z NASA izJAXA) LOFT – obserwacje w zakresie X, z ogromną rodzielczością czasową, czarnych dziur i gwiazd neutronowych MarcoPolo-R – dostarczenie na Ziemię fragmentu bliskiej planetoidy STE-QUEST – dokładne pomiary efektów wynikających z ogólnej teorii względności

ESA Cosmic Vision (2015-2025)

- Jakie są warunki formowania planet i powstawania życia?
- Jak działa Układ Słoneczny?
- Jakie są fundamentalne prawa fizyki we Wszechświecie?
- Jak powstał Wszechświat i z czego jest zbudowany?

3 średnie misje (M) – koszt 470 M €, w całości finansowane przez ESA

kandydaci (M1,M2): Euclid – ciemna materia i energia Plato – planety pozasłoneczne, oscylacje gwiazd Solar Orbiter – badanie Słońca z bliska oraz warunków fizycznych in-situ w koronie niedaleko od powierzchni (60 R₀)

kandydaci (M3): EChO – atmosfery planet pozasłonecznych LOFT – obserwacje w zakresie X, z ogromną rodzielczością czasową, czarnych dziur i gwiazd neutronowych MarcoPolo-R –dostarczenie na Ziemię fragmentu bliskiej planetoidy STE-QUEST – dokładne pomiary efektów wynikających z ogólnej teorii względności

Jak Słońce tworzy i kontroluje heliosferę?

Solar Orbiter – cele naukowe

- Gdzie i jak w koronie słonecznej powstaje wiatr słoneczny?
- Jak zjawiska dynamiczne wpływają na zmienność heliosfery?
- Jak rozbłyski słoneczne i zjawiska stowarzyszone produkują energetyczne cząstki wypełniające heliosferę?
- Jak działa dynamo słoneczne i jaki wywiera wpływ na heliosferę?

Solar Orbiter

Wymagania dla orbity:

 Zbliżenie do Słońca na poziomie 0.25 j.a.
Okres orbitalny umożliwiający "zawiśnięcie" nad jednym obszarem aktywnym podczas zbliżenia do Słońca

 Odchylenie od płaszczyzny ekliptyki do 25°
Wszechstronne zbadanie warunków fizycznych w wewnętrznej heliosferze w funkcji odległości od Słońca, szerokości ekliptycznej i poziomu aktywności

Start: 4 stycznia 2017 r.

dzień 101 - przejście w pobliżu Wenus (4000 km), dzień 597 i 1328 - dwa przejścia w pobliżu Ziemi (700 km) dzień 1497 - bliskie (300 km) przejście koło Wenus

9.02.2021 – początek właściwej fazy naukowej, kolejne przejścia koło Wenus będą wynosiły satelitę coraz wyżej ponad płaszczyznę ekliptyki

Środowisko pracy

	W/m2
średnio dla całej misji	4041
maksymalny (w najmniejszym peryhelium 0.22 j.a.)	27007
minimalny (w największym aphelium 1.38 j.a.)	713
średnio dla Ziemi (stała słoneczna)	1366

Zbliżenie do Słońca wymaga użycia efektywnej osłony termicznej, za którą "schowają" się instrumenty badawcze

Solar Orbiter

Teleskopy:

- Polarimetric and Helioseismic Imager (PHI)
- EUV full-Sun and high-resolution Imager (EUI)
- EUV spectral Imager (SPICE)
- Spectrometer Telescope for Imaging X-rays (STIX)
- Coronagraph (METIS/COR)
- Heliospheric Imager (SoloHI)

Pomiary in-situ:

- Solar Wind Analyser (SWA)
- Energetic Particle Detector (EPD)
- Magnetometer (MAG)
- Radio and Plasma Wave analyser (RPW)

Polski udział

Spectrometer Telescope for Imaging X-rays (STIX)

element obrazujący: tuba teleskopu, modulatory, układ orientacji na Słońce moduł detektorów i elektroniki

STIX – okno rentgenowskie

Grid Spider Mount Grid Control Contro

Dwa zadania:

 ograniczenie promieniowania widzialnego i podczerwonego wpadającego do środka instrumentu

 blokowanie promieniowania rentgenowskiego o energii poniżej 4 keV

STIX – element obrazujący

Amplituda i faza mogą być mierzone dzięki rotacji instrumentu wokół osi skierowanej do Słońca – metoda użyta w instrumencie RHESSI

dwie jednakowe siatki rozsunięte na odległość d

funkcja transmisji dla źródła punktowego

Obrazowanie twardego promieniowania rentgenowskiego

Obraz rekonstruowany przy użyciu kilku metod: Back Projection, CLEAN, PIXON, MEM NJIT, UV Smooth, Forward Fit VIS

rozdzielczość przestrzenna: > 2.5 arc sec

obraz pojedynczego źródła

Obrazowanie twardego promieniowania rentgenowskiego

Hurford i in. 2002, Sol. Phys. 210c

STIX nie może rotować. Z tego powodu zastosowano rozwiązanie podobne jak w przypadku instrumentu HXT na satelicie YOHKOH – układ siatek o różnych orientacjach i różnych rozmiarach.

Poza tym będą one skręcone względem siebie a nie tylko przesunięte

Korzyści wynikające z użycia skręconych względem siebie siatek:

- lepsza zbieżność metod rekonstrukcji obrazów
- obrazowanie bardziej "odporne" na obecność tła
- zmniejszenie masy ~ 0.3 kg
- eliminacja jednej przesłony

Zabezpieczenia przed wysokim sygnałem

Co za detektorami?

Instrument Data Processing Unit (IDPU)

- sterowanie przyrządem
- komunikacja z pokładem SO
- odbieranie i wykonywanie komend
- zbieranie danych z detektorów i przechowywanie
- wstępna redukcja i analiza danych
- kontrola punktów węzłowych STIX

STIX – zadania i oczekiwania

śledzenie wysokoenergetycznych elektronów od miejsca przyspieszania do miejsca położenia STIX (wspólnie z innymi instrumentami SO)

- obserwacje spektroskopowe z rozdzielczością przestrzenną
- obserwacje nowych typów źródeł HXR (CME, zatrzymane erupcje)
- obserwacje mikro i nanorozbłysków, emisja HXR od spokojnego Słońca
- ✤ inicjowanie sekwencji obserwacyjnych ("flare trigger") innych instrumentów SO

Wspólne obserwacje z...

InterHelioZond wystrzelenie około 2018 maksymalne zbliżenie 40 R_o instrumenty: CHEMIX

Solar Probe Plus nie później niż w 2018 pomiary in-situ maksymalne zbliżenie 0.08 j.a. (<20 R_o)

Dziękuję za uwagę

