Investigation of the energy-height relation for solar flare footpoints observed by RHESSI

T.Mrozek & J. Kowalczuk Astronomical Institute University of Wrocław

Theory

Brown, J., 1971, Sol. Phys., 18, 489 Brown, J. and McClymont, A.N. 1976, Sol. Phys., 49, 329 Brown, J et al., 2002, Sol. Phys., 210, 373

From collisional transport (simplified):

$$E(E_0, N) = (E_0^2 - 2KN)^{1/2}$$

Stopping depth for electron of energy E₀:

$$N_s(E_0) = \frac{E_0^2}{2K}$$

Relation between a height and an energy of the source should be observed.

Observed relation gives opportunity for measuring the density in a collision region

Takakura, K., Tanaka, K., Nitta, N., Kai, K., and Ohki, K., 1987, Sol. Phys. 107, 109

* HINOTORI 20 - 40 keV * h=7.0 ± 3.5 Mm

Matsushita, K., Masuda, S., Kosugi, T., Inda, M., and Yaji, K., 1992, Publ. Astron. Soc. Japan 44, L89

*	ҮОНКОН	
*	$h_{14} = 9.7 \pm 2.0 \text{ Mm}$	(L)
*	$h_{23} = 8.7 \pm 0.3 \text{ Mm}$	(M1)
*	$h_{33} = 7.7 \pm 0.5 \text{ Mm}$	(M2)
*	$h_{53} = 6.5 \pm 0.7 \text{ Mm}$	(H)

Fletcher, L., 1996, Astron. Astrophys. 310, 661

*
$$n_e = 2 \times 10^{10} - 3 \times 10^{11} \text{ cm}^{-3}$$

* L = 13 - 27 Mm

RHESSI

- launched: February 2002
- 9 large germanium detectors
- energy resolution ~1 keV
- spatial resolution depends on detector selection: ~2.5" (maximal) ~7" (in practice)
- temporal resolution for imaging depends on photon statistic, but must be equal at least ~2 s (half of the RHESSI rotation)

Observations with RHESSI

Aschwanden, M.J., Brown, J.C. & Kontar, E.P., 2002, Sol. Phys., 210, 373

20 Feb 2002

Observations with RHESSI

Mrozek, T. 2006, Adv. in Space Res. 38, 296

17 flares, 37 E-H relations

3 Aug 2002

Mrozek, T. 2006, Adv. in Space Res. 38, 296

Two components in a spectrum of a footpoint

Event selection

10 July 11	CHARLEN CHEVE AND A REAL PROPERTY OF		Contraction of the second		
1	06 III 2004	12:11:56	M 1.3	S15E89	987
2	18 III 2004	06:00:40	C 3.7	N15E89	972
3	$17~\mathrm{V}~2004$	04:13:52	C 7.0	S07W85	943
4	$17 \ \mathrm{VII} \ 2004$	19:16:20	C 5.3	N07E85	943
5	18 VIII 2004	17:31:24	X 1.8	S13W89	964
6	12 IX 2004	18:29:52	C 2.0	S09W68	885
7	01 XI 2004	06:57:44	C 2.9	N12W83	941
8	$23 \ \mathrm{XI} \ 2004$	15:04:24	C 6.5	S06E89	989
9	21 I 2005	00:21:08	C 5.8	N17W74	915
10	21 I 2005	10:12:56	M 1.7	N19W89	961
11	$05~\mathrm{V}~2005$	20:11:16	C 7.8	S06W64	857
12	$09~\mathrm{V}~2005$	18:44:44	B 9.7	N14E64	860
13	$30~\mathrm{VII}~2005$	06:27:44	X 1.3	N08E59	822
14	$22~\mathrm{VIII}~2005$	17:01:20	M 5.6	S16W64	865
15	08 IX 2005	16:54:52	M 2.1	S14E89	948
16	$19 \ IX \ 2005$	16:39:16	B 3.2	S12,W77	925

Jan 2004 – Jan 2006

Radial distance > 800 arc sec

Images reconstructed with CLEAN method

Energy intervals selection:

16 flares 36 E-H relations

10

Results

asterisks - Machado et al. 1980, ApJ 242, 336 lines – Mrozek & Kowalczuk 20009

Results

Time evolution of E-H relation

Electrons can be trated as a tool measuring the density in the chromosphere.

The method has a great advantage in comparision with observations made in other wavelengths – the physics of emission is simple and it is optically thin.

Density measurements are in good agreement with previous ones.

The E-H relation gives valuable constraints for theoretical models.

Future:

Analysis of the data from January 2006 up to present (easy work, few flares observed)

Detailed modeling of E-H relation (more realistic cross-sections, spectral dependence)

Repeating a work made by Fletcher but with our better height measurements

Modeling the relation between a height in a solar atmosphere and an energy deposited by non-thermal electron beam, but with use of observed E-H relation – important for flare energy budget