Zatrzymana erupcja rury magnetycznej – modele i obserwacje

Rozbłyski i erupcje

Rozbłyski i erupcje

Gilbert, H.R. i in. 2007, Sol. Phys., 245,287

Typy erupcji

Całkowita	Większość masy włókna (>90%) i struktury magnetycznej ucieka w przestrzeń międzyplanetarną
Częściowa	 a) Cała struktura magnetyczna ulega erupcji unosząc niewielką część masy (efekt spływania materii) b) Część struktury magnetycznej ulega erupcji wraz z niewielką ilością masy
Zatrzymana	Żadna część struktury magnetycznej i masy, które uległy erupcji, nie ucieka w przestrzeń międzyplanetarną

% rozbłysków stowarzyszonych z CME:

Kahler, S.W. i in. 1989, ApJ, 344, 1026	długotrwałe są częściej stowarzyszone z CME			
Harrison, R.A. 1995, A&A, 304, 585	klasa: długość:	B – X 1 – 6 godzin	7% – 100% 6% – 50%	
Andrews, M.D. 2003, Sol. Phys., 218,261 (229 zjawisk)	klasa:	M – X	55% – 100%	
Yashiro, S. i in. 2005, J. Geoph. Res., 110	klasa:	С	16% – 25%	
(1301 zjawisk)		Μ	42% – 55%	
		Х	90% - 92%	

Nawet silne rozbłyski mogą pojawiać się bez CME

Wang, Y. i Zhang J. 2008, ApJ, 665, 1428

lata 1996-2004: 104 rozbłyski klasy X rozbłysk bez CME – jeżeli do 30 minut przed i po początku rozbłysku nie zaobserwowano CME znaleziono 11 rozbłysków klasy X bez CME (11%)

No.	Label	Date	Beginning (UT)	T_R^{a} (minutes)	$T_D^{\rm b}$ (minutes)	Class	Location	NOAA AR	CME V/Width ^c	Comment
						Сс	onfined Flares			
1		2000 Jun 6	13:30	9.0	7.0	X1.1	N20, E18	9026		Contained by a preceding and a following M-class flare (Y)
2		2000 Sep 30	23:13	8.0	7.0	X1.2	N07, W91	9169		Limb event (G, Y)
3		2001 Apr 2	10:04	10.0	6.0	X1.4	N17, W60	9393		Contained by a preceding eruptive flare (Y)
4	C_1	2001 Jun 23	04:02	6.0	3.0	X1.2	N10, E23	9511		(Y)
5	C_2	2003 Jun 9	21:31	8.0	4.0	X1.7	N12, W33	10374		
6	$\overline{C_3}$	2004 Feb 26	01:50	13.0	7.0	X1.1	N14, W14	10564		
7		2004 Jul 15	18:15	9.0	4.0	X1.6	S11, E45	10649		
8		2004 Jul 16	01:43	23.0	6.0	X1.3	S11, E41	10649		
9		2004 Jul 16	10:32	9.0	5.0	X1.1	S10, E36	10649		
10		2004 Jul 16	13:49	6.0	6.0	X3.6	S10, E35	10649		
11	C_4	2004 Jul 17	07:51	6.0	2.0	X1.0	S11, E24	10649		Events 7-11 all from the same AR
						Er	uptive Flares			
1	E ₁	1998 May 2	13:31	11.0	9.0	X1.1	S15, W15	8210	936/halo	
2	E_2	2000 Mar 2	08:20	8.0	3.0	X1.1	S18, W54	8882	$776/62^{\circ}$	
3	E ₃	2000 Nov 24	04:55	7.0	6.0	X2.0	N19, W05	9236	1289/halo	
4	E_4	2004 Oct 30	11:38	8.0	4.0	X1.2	N13, W25	10691	427/halo	

Do porównania wybrano rozbłyski stowarzyszone z CME :

- podobne czasy narastania i zaniku
- klasa od X1.0 do X2.0
- położenie od E60 do W60 (ze względu na MDI)

Wang, Y. i Zhang J. 2008, ApJ, 665, 1428

26 II 2004 r.

biały: >50G, czarny: <-50G, szarości: wartości pośrednie

Określono położenie rozbłysku i obszaru aktywnego za pomocą centroidów liczonych na obrazach EIT i MDI

Rozbłyski bez CME są położone bliżej centrum obszaru aktywnego

Brak wyraźnych różnic w przypadku strumienia

Event	Date	Flux ^a (10 ¹³ Wb)	Distance ^b (Mm)	
	Confined Flares			
C ₁	2001 Jun 23	5	6	
C ₂	2003 Jun 9	36	17	
C ₃	2004 Feb 26	23	8	
C ₄	2004 Jul 17	34	10	
	Eruptive Flares			
E ₁	1998 May 2	17	22	
E ₂	2000 Mar 2	24	33	
E ₃	2000 Nov 24	18	37	
E ₄	2004 Oct 30	11	29	

Wang, Y. i Zhang J. 2008, ApJ, 665, 1428

Uzyskane wyniki wskazują, że duży udział w powstrzymaniu erupcji może mieć silniejsze pole obecne w koronie (małe wartości Fl/Fh) oraz położenie rozbłysku w obszarze aktywnym

Green i in. 2002, Sol. Phys., 205, 325

30 IX 2000 r., A 22:06, B 22:26, C 23:26, D 23:50 1 X 2000 r. E 00:06, F 00:26 Brak CME w obserwacjach LASCO C2 i C3

EIT 195 - widoczne zamknięte struktury

Green i in. 2002, Sol. Phys., 205, 325

Widoczny plazmoid, którego ekspansja zostaje zatrzymana

W zatrzymaniu nie brało udziału okalające pole

Zatrzymanie erupcji zostało spowodowane przez uzyskanie stanu równowagowego (jakiego?).

Niestabilność wyboczeniowa

coraz silniejsze skręcenie ->

małe zaburzenie powoduje wyboczenie rury ->

nowy stan równowagi

Niestabilność wyboczeniowa

Stabilność jest kontrolowana głównie przez skręcenie:

$$\Phi = \frac{LB_{\theta}}{rB_{z}}$$

Dla pętli w koronie: L>>r

Niestabilność pojawia się gdy:

$$\Phi \ge \Phi_c$$

Dla prostej rury:

$$\Phi_c \approx 2.5 \pi$$

Zakrzywione rury nie były jeszcze modelowane

Niestabilność wyboczeniowa

Amari, T. i Luciani, J.F. 1999, ApJL, 515, 81

Pierwsza faza (górny rząd) systematyczne skręcanie rury przez ruchy plazmy do wartości (2.3-2.7)π

Druga faza (środkowy)

struktura nie mogąc osiągnąć stanu równowagowego rozwija się bardzo dynamicznie

Trzecia faza (dolny)

rozwijająca się struktura napotyka zewnętrzne pole, dochodzi do przełączenia i równowagi

Obserwacje

1 VIII 2001 r.

31 V 1999 r.

Ji i in. 2003, ApJL, 595, 135

M2.0, N10W87 RHESSI TRACE 195 Å BBSO Hα

27 V 2002 r.

18:00:56 – pierwsze pojaśnienia w TRACE 18:03:20 – pierwsze pojaśnienia w Hα

różnica wskazuje na grzanie przez przewodnictwo

Trzy źródła HXR. Szczytowe wskazuje miejsce gdzie przełączanie prowadzi do otwierania pola ponad włóknem

Szczytowe źródło położone tuż ponad włóknem nie zmienia położenia podczas gdy ulegające erupcji włókno przemieszcza się

Zgodność przestrzenna między pojaśnieniami widocznymi w EUV i źródłem szczytowym widocznym w HXR (miejscem wydzielania energii?)

Brak zmian separacji stóp widocznych w zakresie EUV – niezgodność z modelem Kopp-Pneuman (1976)

Zmiany wysokości włókna wskazują, że hamowanie (linia kropkowana) przekracza 10 razy przyspieszenie grawitacyjne na powierzchni Słońca (2.74 x 10⁴ cm s⁻²)

Alexander, D. i in. 2006, ApJL, 653, 719

PIXON zamiast CLEAN

Potwierdzona obecność źródła obserwowanego przez Ji i in.

Drugie źródło położone w miejscu podejrzanym o istnienie przełączania (X point)

Török, T. i Kliem, B. 2005, ApJL, 630, 97

Porównanie modelu z obserwacjami (Ji i in.) zmian wysokości i prędkości erupcji.

2002-May-27 18:12:31

Erupcję zatrzymaną i rozwijającą się można otrzymać z tego samego modelu zmieniając jedynie pole otaczające ekspandującą strukturę

Simulation Parameters				H				
Section	Φ/π	b	η(2)	L	h_0 (Mm)	$ au_{ m A}$ (s)	$\frac{ \boldsymbol{B}_0(h_0) }{(\mathrm{G})}$	W (ergs)
3	$5.0 \\ -5.0$	0.29 0.33	0.83 1.54	10 32	23 115	11.5 111	200 10–40	$10^{31} \\ 10^{31} - 10^{32}$

Model kwadrupolowy

Sweet, P.A. 1958,

W przeciwieństwie do CSHKP w tym modelu pole ponad rozbłyskiem nie musi zostać otwarte

W odpowiednich warunkach pole otaczające może powstrzymać erupcję

Hirose, S. i in. 2001, ApJ, 551, 586

Klasa GOES: M6.2 Położenie: N14 W61

RHESSI: całe zjawisko

TRACE:

171 Å (rozdzielczość czasowa 8-40 s) 1600 Å (tylko w fazie zaniku)

GOES SXI:

silna saturacja w czasie fazy impulsowej

SOHO LASCO: brak obserwacji CME

TRACE TRACE 171 +4-Jul-2004 05:02:59:281 UT

850 X (arcsecs)

5:17:30 – pierwsza oznaka rozwijającej się erupcji (bardzo mały obszar – około 3000 km)

Wyraźnie skręcona struktura

System pętli widocznych dwie godziny po maksimum rozbłysku

Faza początkowa związana ze zwartym, jaśniejącym obszarem

Szybka ekspansja obserwowana tuż po silnych impulsach widocznych w zakresie 25-50 keV

Wyhamowanie erupcji (600 m s⁻²). Pierwotny front załamuje się, widoczne są boczne erupcje

850 X (arcsecs)

800

Można wyróżnić dwa systemy wstęg widocznych na obrazach TRACE 1600 Å:

wewnętrzny – zgodny przestrzennie z arkadą związaną z rozbłyskiem

zewnętrzny – zgodny przestrzennie z systemem pętli "porozbłyskowych"

Brak obserwacji wykonanych w filtrze 1600 Å dla okresu hamowania erupcji

Archontis, V. i Török, T. 2008, A&A, 492, L35

Wypływające dwa systemy pętli

Pierwszy będzie stanowił pole otaczające

Drugi ulega erupcji nieco później

Rozpatrywano trzy różne modele (α –skręcenie na jednostkę długości): E1: B₀=5, α =0.4 (czerwony) E2: B₀=3, α =0.4 (zielony) E3: B₀=3, α =0.1 (czarny)

Przykład dla modelu E1

Rzut na płaszczyznę xz Oznaczenia literowe odnoszą się do kolorów linii na lewym rysunku przerywane – centrum rury ciągłe – czoło ekspandującego pola otaczającego

Podsumowanie

 $A - A_1$

- 1. Okalające pole magnetyczne
- 2. Położenie rozbłysku w obszarze aktywnym
- 3. Skręcenie ekspandującej rury
- 14 VII 2004 r. skręcenie nie powstrzymało erupcji ale pole ponad było wystarczająco silne