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1. Introduction

The purpose of this chapter is to provide a general background for the
more specific chapters to follow. Much of the application of variability in
astrophysics is concerned with stellar structure; thus we briefly review the
calculation of stellar structure and evolution. Furthermore, we present the
‘machinery’ of stellar pulsations. Throughout, the emphasis is on general
principles, rather than on specific applications. It is evident that the expo-
sition will be far from complete. For more detailed background information
on stellar evolution one of the many books on the subject may be consulted
(e.g. Kippenhahn & Weigert 1990; Hansen & Kawaler 1994; Cox & Giuli
1968); much more extensive presentations on stellar pulsations were pro-
vided by, for example, Unno et al. (1989), Cox (1980), Gough (1993), and
Gautschy & Saio (1995, 1996). Also, Christensen-Dalsgaard et al. (1999) (in
the following Chapter II) present applications to the helioseismic studies of
the solar interior; further details on the crucially important treatment of
the equation of state and opacity are provided by Déappen & Guzik (1999)
(in the following Chapter III).
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The observable properties of stellar pulsations depend on the underlying
stellar structure and dynamics and hence, in principle, all provide potential
tools for probing stellar interiors. The practical possibilities for using these
tools depend both on the ease and precision with which a given pulsation
property can be observed, and the extent and certainty with which it can be
related to aspects of the stellar interior. Stellar oscillation frequencies can
be determined observationally with extremely high accuracy. Furthermore,
the frequencies are related in a relatively simple way to the structure and
rotation of the stars; in many cases, linear analysis, often even assuming
the adiabatic approximation, is adequate, making the frequencies very di-
rect measures of stellar interiors. The processes that excite the oscillations
are also fairly well understood for several types of pulsating stars; thus the
limits of the regions of instability, say, can be related to the physics of the
stellar interiors. In addition, it is sometimes possible to measure the damp-
ing rates of modes, which may provide more detailed information about
the physical processes causing the damping. The effects that control the
limiting amplitude of the oscillations are in general rather more uncertain,
although in a few cases information is emerging from the amplitude dis-
tribution. Finally, phase differences and amplitude ratios between different
observables, for a given mode, reflect the behaviour of the oscillation in, and
hence may provide information about, the properties of the atmosphere.

Stellar pulsations can be excited in two fundamentally different ways:
through self-excitation or by an external force. In the former case, there
are regions where the pulsation operates as a heat engine, extracting me-
chanical energy from the energy flow through the star; even though in other
regions the tendency is for the motion to be dissipated, the net result is that
mode is linearly unstable. This driving is typically associated with specific
features in the opacity, and it requires that the location of these features
satisfies certain constraints. As a result, the instability is typically restricted
to fairly well-defined regions of stellar parameters; a typical example is the
Cepheid instability strip. Also, the excitation may be selective, operating
only for modes in a fairly restricted frequency band. It is important to note
that no linear stability calculation provides information about the limit-
ing amplitude of the modes; this must result from nonlinear interactions,
presumably involving either the saturation of the driving mechanism or in-
teractions with other modes. However, it is fair to say that these issues are
still far from being understood.

Other stars, including the Sun, are observed to pulsate even though
linear stability calculations indicate that the relevant modes are damped.
In this case, the oscillations require forcing, the most likely source being
turbulent convection in the near-surface regions of the star. Since stellar
convection has a broad spectrum of timescales, such forcing is expected
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to lead to the excitation of modes over a range of frequencies, although
of course depending on the properties of the modes. Also, in this case
the oscillation amplitudes may be estimated from the balance between the
energy input from the forcing and the damping; in fact, in the solar case
such estimates are not inconsistent with the observed amplitudes.
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Figure 1. Schematic Hertzsprung-Russell diagram illustrating the location of several
classes of pulsating stars. The dashed line shows the zero-age main sequence, the con-
tinuous curves are selected evolution tracks, at masses 1, 2, 3, 4, 7, 12 and 20 Mg, the
dot-dashed line is the horizontal branch and the dotted curve is the white-dwarf cooling

curve.

As a small taste of the riches available through the analysis of pulsat-
ing stars, Fig. 1 shows schematically the location of pulsating stars in the
Hertzsprung-Russell diagram. Many of these are discussed in considerable
detail in these proceedings. It is striking that pulsation has been found, or
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is suspected, for stars of virtually all types. Although much remains still to
be done before we can use observations of these pulsations to investigate
the detailed stellar properties in all these cases, the observations obviously
have the potential for very extensive tests of the theory of stellar structure
and evolution.

2. Equations of stellar evolution and pulsation

2.1. GENERAL EQUATIONS OF HYDRODYNAMICS

To provide a background for the treatment of stellar pulsations, we give a
brief summary of the basic equations of hydrodynamics. For more detailed
treatments, any of the large number of basic textbooks may be consulted
(e.g. Landau & Lifshitz 1966; Batchelor 1967).

A hydrodynamical system is characterized by specifying the physical
quantities as functions of position r and time ¢. These properties include the
local density p(r,t), the local pressure p(r, ), and any other thermodynamic
quantity that may be needed, as well as the local instantaneous velocity
v(r,1). Here r denotes the position vector to a given point in space, and the
description therefore corresponds to what is seen by a stationary observer.
This is known as the so-called Fulerian description. In addition, we shall
also use the so-called Lagrangian description, following the motion of a
given parcel of fluid. To these descriptions correspond the time derivative
0/ 0t seen by a stationary observer, and the derivative d/dt observed when
following the motion; the latter is also known as the material (or Stokes)
time derivative. The local velocity is obviously determined by the rate of
change of the position r of a fluid parcel:

v(r,t) = % . (1)

This may furthermore be used to relate the two time derivatives of some

quantity ¢:

d 0 d d
O (29) 4o dr 2

i~ \a WtV @)

Conservation of mass is expressed by the equation of continuily:

dp . _
Fn +div(pv)=0. (3)

With the aid of equation (2), equation (3) may also be written

d
d—';)—l—pdiVV:O, (4)
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thus giving the rate of change of density in a given parcel of flowing gas.
If we define the specific volume as V, = 1/p, which measures the volume
taken up by a unit of mass, then an alternative formulation of equation (4)
is

— —Ft =divv. (5)

Hence div v is the rate of expansion of a given volume of gas during its
motion.

Under stellar conditions we can generally ignore internal friction (or
viscosity) in the gas. The equation of motion, per unit volume, can then be
written

dv

P

where f is the body force per unit mass, which has yet to be specified.
Here the first term on the right-hand side is the surface force, given by the

pressure p. Combining equations (2) and (6) yields an alternative form of
the equation of motion (also known as the Euler equations),

ov
pa—l—pv-Vv:—Vp—}—pf. (7)
Among the possible body forces we here consider only gravity. Thus, in
particular, we neglect effects of magnetic fields. The force per unit mass
from gravity is the gravitational acceleration g, which can be written as
the gradient of the gravitational potential ®:

g=Vo, (8)
where ® satisfies Poisson’s equation
Vi = —4rGp, (9)

G being the gravitational constant.

To complete the description, we need to relate p and p. This is done
through the energetics of the system, as described by the first law of ther-
modynamics. By applying it to a volume of unit mass, moving with the
fluid, we obtain the energy equation

@_dE_I_ i(l)_dE pdp dE p
a - @t Pa

—l=—-=—=—+=divv. 1
p dt  p? dt  dt +p v (10)

Here d@/dt is the rate of heat loss or gain per unit mass of material,
and F the internal energy per unit mass. The equation may be cast in
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more convenient forms by using thermodynamic identities (e.g. Cox & Giuli

1968):

(11)
(12)
(13)

@ _ #(d_!]_@d_ﬂ)
dt  p(I3—1) \dt p dt

@T 15—1T@)
Cp e

dt I, pdt

dT T dp
Is—1)=—| .
evig ~ (s =1 P dt]

Here T is temperature, c, and ¢, are the specific heats per unit mass at
constant pressure and volume, and the adiabatic exponents are defined by

r. - <(9hlp) -1 <3lnT)
VT \onp) Iy,  \0lnp/,y’
dInT
I3-1 = (, = ) , (14)
dlnp /) 4
the derivatives being at constant specific entropy, ¢.e., corresponding to an

adiabatic change.
The heating term in equations (10) — (13) can be written as

p@:pg—divf. (15)
dt
Here ¢ is the rate of energy generation per unit mass (from, for example,
thermonuclear reactions), and F is the flux of energy. In general, radiation is
the dominant contribution to F in stars. Here we consider just the diffusion
approximation to radiative transport, according to which the radiative flux
is given by
4acl?

fra = -
d 3Kkp

VT, (16)

where k is the opacity, ¢ the speed of light, and « is the radiation den-
sity constant. This provides a relation between the state of the gas and
the radiative flux, which is analogous to a simple conduction equation. It
might be noted that in the interiors of highly evolved stars, including white
dwarfs, heat conduction by degenerate electrons is important; this can for-
mally be included in equation (16) by suitably modifying the opacity (e.g.
Kippenhahn & Weigert 1990).

The relative importance of the left-hand and the right-hand side in
equation (15) depends on the relevant time scales. During normal stellar
evolution, conditions change so slowly that d@/d¢ can sometimes be ne-
glected compared with, for example, div F [see also eq. (25) below]. On the
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other hand, for rapidly varying phenomena such as stellar pulsations, each
term in d@ /dt is often very much larger than the right-hand side; as will be
discussed in more detail in Section 2.3.2, this leads to adiabatic approzima-
tion where the right-hand side of equation (15) is neglected. In that case,
for example, we obtain from equation (11) that

dp _ Tupdp (17)
dt p dt’

a very simple relation between p and p.

At a microscopic level, equation (16) provides a complete description of
the flux of energy in stellar interiors. However, often transport by turbu-
lent gas motion must be taken into account. This is the case in convection
zones, where rising hot gas and descending cool gas dominate the energy
transport. Ideally, the entire hydrodynamical system, including convection,
must be described as a whole. However, the resulting equations are too
complex to be handled analytically or numerically, in general treatments of
stellar structure or pulsation. Thus it is customary to separate out the con-
vective motions by performing averages of the equations over length scales
that are large compared with the convective motion, but small compared
with other scales of interest. In this case the convective flux appears as an
additional contribution in equation (15); it must be determined from the
other quantities characterizing the system along with consideration of the
equations for the turbulent motion. This is generally done quite crudely; a
familiar example is the mixing-length theory.

Full description of a hydrodynamical system also requires information
about the properties of matter in the system. In particular, we need an
equation of state, defining the relation between pressure, density and tem-
perature as well as the thermodynamical quantities appearing in the energy
equation, equations (11) — (13). We return to this below (see also Chap-
ter III); however, it is useful already here to note that a reasonable approx-
imation to the equation of state of stellar interiors is that of a perfect, fully
ionized gas, according to which

_ kgpT

KMy

; (18)

where kg is Boltzman’s constant, p is the mean molecular weight and m,
is the atomic mass unit. In this approximation, also, I'y = I'y; = I's = 5/3.

2.2. EQUATIONS OF STELLAR STRUCTURE AND EVOLUTION

The equations presented in the previous section are completely general;
thus in principle they can be used to describe simultaneously both the
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evolution of a star and its pulsations. In practice, however, this is not
possible because of the huge range of time scales involved: evolution of the
Sun, for example, takes place on a nuclear time scale of 10y, while the
pulsations are characterized by the dynamical time scale of order 1 h.

To circumvent this problem, stellar evolution is generally treated by as-
suming that the star is in hydrostatic equilibrium; then the time derivative
in equation (7) is neglected. We furthermore neglect rotation, so that the
velocity field vanishes; assuming also that gravity provides the only body
force, we are left with [¢f. equation (8)]

Vo = pogo = poV &, (19)

where we have denoted equilibrium quantities with the subscript “0.” Pois-
son’s equation (9) is unchanged; that is,

Vioy = —4rGpy. (20)
If the star is spherically symmetric, it can be integrated once, to yield

Gm,

G T
go = 7‘_2/0 4rrpodr’ = ) (21)

r2

where m, o is the mass contained in the sphere interior to r,
" 2
Meo = / dnrpodr’. (22)
0

Thus equation (19) can also be written as

dpo G'm,0po

—~. = —Yopo = -

dr ’ (23)

72
the familiar form of the equation of hydrostatic equilibrium.

The energy equation, equations (10) and (15), is typically rewritten as
an equation for the energy flux. Assuming again spherical symmetry, we
obtain

1 d dFy @%

2
Fro) = - po—— , 24
r2dr (" Fr0) = peo = po dt + po dt (24)
or, with the luminosity L, = 47r2F,,
dL,o 2 ( dEy Po dpo)
ar TP T T d) (25)

this is the commonly used form of the energy equation. It should be no-
ticed that during ‘normal’ phases of evolution, where the energy production
comes from quiet nuclear burning, the time-derivative terms in equation
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(25) are small compared with the nuclear term, and hence are sometimes
neglected.

Finally, the temperature gradient in the model must be determined from
the requirements of energy transport. If the flux of energy is dominated by
radiation, equation (16) directly relates the luminosity to the temperature
gradient:

dTo 3K0po

— =——1I,9. 26
dr 167r7'2aET§’ 0 (26)

However, as noted in Section 2.1 convection may also have to be taken
into account. The possibility of convective instability arises if the density
decreases too slowly with increasing r; this may give rise to a situation
corresponding effectively to having denser material above less-dense mate-
rial. The circumstances giving rise to this are indicated by equation (26):
if, for example, the opacity is very high, a large temperature gradient is re-
quired to transport the energy; since pressure, temperature and density are
related by equation (18), and the pressure gradient is determined approxi-
mately by equation (23), a very steep temperature gradient may lead to a
slow decrease of density with r. A more careful analysis (e.g. Kippenhahn
& Weigert 1990) shows that the condition for instability, in terms of the
gradient V = d1In7T/dIn p of temperature with respect to pressure, is that

V >V.a (27)

(the so-called Schwarzschild criterion), where

olnT I'y—1
Vad = = 2
d <8hlp)ad Ty (28)

[cf. equation (14)].

In regions of instability, energy transport is generally dominated by
convection. The energy transport by this process depends on the size of the
superadiabatic gradient V —V,q, as well as on the energy content of the gas
which in turn is proportional to the density. In most of the interiors of stars,
this process is so efficient that only a very small superadiabatic gradient is
required to transport the entire stellar luminosity; thus V o~ V4, or

(29)

In these regions the structure of the star is essentially determined by the
equation of state, the chemical composition and the (nearly constant) spe-
cific entropy. The latter is controlled by the matching to the neighbouring
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convectively stable regions, possibly through a boundary layer at the edge
of the convection zone!.

In stars with convective envelopes, the density is so small near the stellar
surface that the temperature gradient becomes significantly superadiabatic;
the detailed properties of this superadiabatic region controls the change in
specific entropy between the atmosphere and the nearly adiabatic bulk
of the convection zone. Here a more detailed description of convection is
required, to relate the superadiabatic gradient to the luminosity and the
properties of the gas. A typical example of the descriptions used in stellar
modelling is the mixing-length treatment, in which the convective eflicacy
is parametrized by the mixing-length parameter a.. By adjusting a. the
superadiabatic gradient, and hence the specific entropy, may be changed;
this in turn affects the overall structure of the model. In the solar case, a. is
adjusted in order to obtain a model of the present Sun with the correct sur-
face radius (¢f. Chapter II, Section 1.2). Recently, detailed hydrodynamical
modelling of the near-surface part of convection zones in the Sun and a few
other stars has been carried out (e.g. Stein & Nordlund 1998; Trampedach
et al. 1997; Ludwig, Freytag & Steffen 1999). Although the simulations ex-
tend only over the outer approximately 2,000 km of the convection zone,
they are sufficiently deep that the lower part is approximately adiabatic;
hence they essentially define the specific entropy and thereby the struc-
ture of the rest of the convection zone. Interestingly, in the solar case the
resulting structure is largely consistent with calibrated models using the
mixing-length treatment, as well as with the helioseismically determined
depth of the solar convection zone (Rosenthal et al. 1999).

Stellar models are generally computed by following the change in struc-
ture as the star ages and the distribution of chemical composition changes.
In the simplest form, only composition changes caused by nuclear reactions
are taken into account. In that case the rate of change of, for example, the
abundance by mass X of hydrogen can be written as

dX

dt
where rx is the net destruction rate, obtained by summing over the reac-
tions in which hydrogen takes part. Thus rx is determined by the rates of
individual reactions and the abundances of the relevant elements. It may
be necessary, however, to take into account more extensive networks of nu-
clear reactions, not least in later stages of evolution. In convection zones
matter is completely mixed on short time scales, while mixing due to other
hydrodynamical processes may be important also in the convectively stable
regions.

=—rx, (30)

1For example, if convective overshoot must be taken into account; e.g. Zahn (1991)
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It is increasingly becoming realized that diffusion and settling play im-
portant roles in the chemical evolution of stars (for a review, see for example
Michaud & Proffitt 1993). In the solar case, the effect is relatively modest
but clearly observable as a result of the high precision of the helioseismic
data (e.g. Cox, Guzik & Kidman 1989; Christensen-Dalsgaard, Proffitt &
Thompson 1993; Richard et al. 1996). In somewhat hotter stars, with shal-
lower outer convection zones, the effects are much more dramatic, poten-
tially leading to drastic changes in the surface composition (e.g. Turcotte,
Richer & Michaud 1998), as well as in the distribution of elements in the
interior with potential consequences for the stability of the stars towards os-
cillations (Charpinet et al. 1997). On the other hand, the apparent absence
of abundance anomalies in most stars indicates that settling is somehow
suppressed, presumably by mixing processes outside the convection zone.
This interplay between settling and mixing remains one of the most severe
areas of uncertainty in current stellar modelling.

Although the equations of stellar structure and evolution, (22), (23),
(25) and (26), may appear simple, their simplicity is misleading. To carry
out the modelling, the equations must be supplemented with a description
of the physical properties of matter in the stars. This includes the thermo-
dynamical properties, already mentioned in the preceding section, as well
as the opacity and the rates of nuclear reactions. To the level of detail re-
quired, for example, by the interpretation of the observed solar oscillation
frequencies, the specification of these physical properties constitutes major
and interesting research areas. Some aspects of these are discussed in Chap-
ter III. It must be kept in mind also that the description of stellar evolution
provided here is highly simplified, not least in the neglect of rotation and
other hydrodynamical effects which might affect the structure of the star,
either directly or through changes in the composition profile. Thus one of
the goals of the studies of variable stars must be to test the limitations of
this, often denoted ‘standard’, stellar evolution theory and infer where and
how it should be improved.

2.3. LINEAR PERTURBATION ANALYSIS

2.3.1. Linearized equations

In many cases of stellar pulsation, including the solar oscillations, the ampli-
tudes are so small that the pulsations can be described with high precision
as small perturbations around the equilibrium structure obtained by the
methods of the preceding section. Thus, for example, pressure is written as

p(I‘, t) = pO(r) + p/(I', t) 5 (31)
where p' is a small perturbation. Here p' is the Fulerian perturbation, that
is, the perturbation at a given spatial point. It is also convenient at times
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to use a description involving a reference frame following the motion. A
perturbation in this frame is called a Lagrangian perturbation. If an element
of gas is moved from r to r + ér due to the perturbation, the Lagrangian
perturbation in pressure may be calculated as

dp(r) = p(r + 6r) — po(r) = p(r) + br - Vpo. (32)

Equation (32) is equivalent to the relation (2) between the local and the
material time derivative. Note also that the velocity is given by the time
derivative of the displacement ér,

0ér
vV=—. 33
ot (33)
To obtain the lowest-order (linear) equations for the perturbations, we
insert expressions such as equation (31) into the full equations, subtract
equilibrium equations, and neglect quantities of order higher than one in
p', p', v, etc. For the continuity equation the result is

o'
%P+ div (pov) =0, (34)
ot

or, by using equation (33) and integrating with respect to time,

p' + div (pobér)=0. (35)

Note that this equation may also be written as [using the analogue to
equation (32)]
ép + podiv (ér) =10, (36)

which corresponds to equation (4). The equations of motion become

0%6r ov
P0G =Po g = ~Vp' + pog’ + p'go , (37)

where, obviously, g’ = V®'. The perturbation ®’ in the gravitational po-
tential satisfies the perturbed Poisson equation

Vo' = —4rGp' . (38)

To obtain the linearized energy equation we need to expand, for exam-
ple, dp/dt. Using equation (2) yields, to first order,

d 0 ap’ ap’ 06 g6
—p——p—l—v-sza—Z;—l—v-VpO:—p—l— a Vpoza—tp.

dt ~ o1 o ot (39)
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Note that to this order there is no difference between the local and the
material time derivative of the perturbations. Thus we have for the energy
equation, using, for example, equations (11) and (12),

06@ 1 (0 (Sp _ Fl,OpO 0(5,0)
(?t po(ng — 1) Ot Po Ot

Q6T Ty0—1 Ty d6p
CP70 (?t FQ’O Po Ot '

(40)

This equation is most simply expressed in Lagrangian form, but it may be
transformed into Eulerian form by using equation (32). From equation (15)
the perturbation in the heating rate is given by

a26Q
Po a1

= 8(pe —divF). (41)

Here the perturbation in ¢, assumed given as a function e(p,7,{X;}) of
density, temperature and composition {X;}, can be obtained as

6;: <Q1115) 6_p_|_ <-0h15) 6_T’ (42)
o dlnp/r x, po olnT),x, Ty
since the Lagrangian perturbations in composition may be neglected. Also,
it is relatively straightforward to obtain the perturbation to the radiative
flux, in the diffusion approximation, from equation (16). On the other hand,
the perturbation to the convective flux is highly uncertain, even within
the simplified framework of the mixing-length treatment; although various
time-dependent formulations exist (e.g. Unno 1967; Gough 1977; Balmforth
1992a) this remains a serious problem in any analysis of oscillations in stars
with outer convection zones.
To simplify the notation, we drop the subscript “0” on equilibrium quan-
tities from now on.

2.3.2. The adiabalic approzimation
Under many circumstances the heating term can be neglected in equation
(40). The resulting, so-called adiabatic, approximation greatly simplifies the
treatment of stellar pulsation. To justify it, we consider the second form of
equation (40), combined with equation (41), to obtain
M TaATO 100 1y g
ot Iy p ot cp Ot Cp p

(43)

here we can compare the time derivative of 67 with the dependence of the
right-hand side on 67T, concentrating on the term in div F. From equation
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(16), assuming that terms in the derivative of 67" dominate, we obtain the
estimate

L vy ~ L (44)

pCp TF
where S o
S 3/{p~cPﬁ ~ 1012 FP { 7

4acT? T3

is a characteristic time scale for radiation over the characteristic length
scale £. The time derivative on the left-hand side of equation (43) may be
estimated as 6T/1I, where II is the pulsation period. Thus, if 77 > II, the
right-hand side of equation (43) is much smaller than each term on the left-
hand side and may often be neglected. However, it is evident that to study
the excitation and damping of modes the energetics of the oscillations, as
described by the nonadiabatic terms, must be included.

An estimate of 7 for an entire main-sequence star such as the Sun
yields 7% ~ 107y, corresponding approximately to the Kelvin-Helmholtz
time for the star, which is a measure of the time required for the star to
radiate its total thermal energy. This is enormously longer than the typical
pulsation period of an hour, and hence in an average sense the adiabatic
approximation is satisfied with very high accuracy. Even when estimated
for small parts of the star, 7 typically greatly exceeds the pulsation pe-
riod. The only exception is in the very superficial layers of the star where
the low density and small length scale reduce the thermal time scale. Here
departures from adiabaticity become important. These regions have rel-
atively small effect on the pulsation periods but they are crucial for the
determination of the pulsation energetics (¢f. Section 5).

For adiabatic motion we obtain from equation (40) that

dép Tipdép

in cgs units . (45)

—— — ——=0 46
ot p Ot ’ (46)
or, by integrating over time,
r
op = -1P op . (47)
p
In Eulerian form this becomes
r
P +8r-Vp= %’(m 6r-Vp). (48)

2.4. EQUATIONS OF STELLAR PULSATION

We now concentrate on pulsations of stars that are assumed to have a
spherically symmetric and time-independent equilibrium. This greatly sim-
plifies the problem: the solution is separable in time, and in the angular
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coordinates (8, ¢) of the spherical polar coordinates (r,8,¢) (where r is
the distance to the centre, 8 is co-latitude, i.e., the angle from the polar
axis, and ¢ is longitude). Then, time dependence is naturally expressed as
a harmonic function, characterized by a frequency w; since, furthermore, it
simplifies the analysis to work in terms of complex variables, we express,
for instance, the solution for the pressure perturbation as

p'(r,0,6,1) = R[F'(r) (0, ¢) exp(—iwt)] . (49)

Here f(8,¢), which remains to be specified, describes the angular variation
of the solution and, as indicated, the amplitude function p’ is a function of r
alone. Note that the choice of sign of w may be somewhat unconventional.
The reason for the convention adopted here will become apparent later;
the convention is set forth (not entirely seriously) in the form of a proposed
resolution of Commission 27 of the International Astronomical Union (see
Appendix).

Given a time dependence of this form, equations (37) can be written as

!/

1
wir = —-Vp' — g’ — p—g , (50)
p p

which has the form of a linear eigenvalue problem, w? being the eigenvalue.
Indeed, the right-hand side can be regarded as a linear operator F(ér)
on ér. This is most easily seen in the adiabatic approximation: here p’ is
related to p’ by equation (48), and p, in turn, can be obtained from dr from
equation (35); also, given p’, ®" and hence g’ can be obtained by integrating
equation (38). We return to this formulation of the problem in Section 3.4,
below.

To obtain the proper form of f(8,¢) in equation (49), we first express
the displacement vector as

or = grar +€h7

where a, is a unit vector in the radial direction, and &, is the tangential
component of the displacement. We now take the tangential divergence divy,
of the equations of motion, and use the tangential part of the continuity
equation to eliminate divy &,. In the resulting equation, derivatives with
respect to @ and ¢ only occur in the combination V3, where

s 1 0 0 J 1 0?

h ™= L 25ing 00 st 00 + r2sin? g a—oﬁQ
is the tangential part of the Laplace operator. The same is obviously true
of Poisson’s equation. Also, it may be shown that the energy equation, with
the flux given by the diffusion approximation, results in the same behaviour.
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This shows that separation in the angular variables can be achieved in
terms of a function f(#,#) which is an eigenfunction of VZ,

Vif=-5AS, (51)

where A is a constant. A complete set of solutions to this eigenvalue problem
are the spherical harmonics,

[(8,¢) = (=1)"e1 " (cos 0) exp(im¢) = ¥/ (6, ) , (52)

where P/" is a Legendre function and ¢, is a normalization constant, such
that the integral of |Y,™|? over the unit sphere is unity. Here [ and m are
integers, such that —l <m <land A =1[({+1).

With this separation of variables the pressure perturbation, for example,
can be expressed as

(.8, ¢,0) = VATRIF (r)Y/" (8, ¢) exp(—iwt)] . (53)

Also, it follows from the equations of motion that the displacement vector
can be written as

v = VarR{[&.(nY"(0,0)a, (54)

En(r) [OY" 1 oy ) :
+ L < 00 ag_l_sin@ 0o as || exp(—iwt) o,

where

- L (1, - )
=—|-p -9 55
ur) = 5 (o7 - ) . (55)
and L = \/I(l + 1); in equation (54) ag and a, are unit vectors in the 6 and
¢ directions. With this definition £. and &, are essentially the root-mean-
square radial and horizontal displacements.

It it instructive to notice, from equation (51), that

~ kK, (56)

where ky, is the tangential component of the wave number in a local approx-
imation of the oscillation as a plane wave. Thus, for example, the horizontal
surface wavelength of the mode is given by

2T 2R

"k U+ D) (57)
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in other words, [ is approximately the number of wavelengths around the
stellar circumference. This identification is very useful in the asymptotic
analysis of the oscillations. Also, it follows from, e.g., equation (53) that
m measures the number of nodes around the equator. A few examples of
spherical harmonics are shown in Fig. 2. It should be noticed that with
increasing degree the sectoral modes, with m = =4I, become increasingly
confined near the equator.

=2 m=20

1=3 m=3

l =20, m=17 =20, m=20

Figure 2. Examples of spherical harmonics, labelled by the degree { and azimuthal order
m. For clarity the polar axis has been inclined 30° relative to the plane of the page.

Given the separation of variables, the equations of stellar pulsation are
reduced to ordinary differential equations for the amplitude functions. For
simplicity, we consider only the adiabatic case; writing the equations in
terms of the variables {¢&., p/, ®', d®'/dr} (where we have dropped the
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tildes) it is straightforward to obtain

dé, 2 1 dp 1 SIQ , 1+,
= (S —P)e+ S (L) - e
dr <7' + Tip dr)5 + pc? (w2 P w2r? (58)
dp’ 2 o2 1 dp, do’
- = -N T T 1. . >
dr plw Jor Iypdr tr dr (59)
and 1 d [ ,d% Lope (14 1)
_I_
1d(2d®)__, (P_ p_er) WA D
r2dr <r dr ) G c? + g + r2 (60)
Here r
2 1P
= — 61
; (61)

is the squared adiabatic sound speed, and we have introduced the character-
istic frequencies S; and N (the so-called Lamb and buoyancy frequencies),

defined by

{1+ 1)c?
S?:#:kﬁg’ (62)
r
and 1 dp 1d
N%= ——p———p).
g <F1p dr  pdr (63)

The physical meaning of these frequencies will become clearer in Section 3.1,
below.

The equations must be combined with boundary conditions: two of these
ensure regularity at the centre, r = 0, which is a regular singular point of
the equations. One condition enforces continuity of ®' and its gradient at
the surface, r = R. Finally, the surface pressure perturbation must satisfy
a dynamical condition. In its most simple form it imposes zero pressure
perturbation on the perturbed surface, i.e.,

op=10 at r=~R. (64)

The fourth-order system of differential equations (58) — (60), and the
boundary conditions, define an eigenvalue problem that has solutions only
for selected discrete values of w. Thus for each (I,m) we obtain a set of
eigenfrequencies wy,, distinguished by their radial order n. The precise
definition of n, for arbitrary stellar models, is a non-trivial problem (e.g.
Lee 1985; Guenther 1991; Christensen-Dalsgaard & Mullan 1994). However,
in many cases m is simply the number of radial nodes in, say, the radial
component of the displacement, excluding a possible node at the centre. It
may be shown that for the present case of adiabatic oscillation, w? is always
real; it follows that the eigenfunctions may be chosen to be real also.
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It should be noticed that in the present case of a spherically symmetric
star the frequencies are degenerate in azimuthal order: the definition of m
is tied to the orientation of the coordinate system which, for a spherically
symmetric star, can have no physical significance. Indeed, the equations
and boundary conditions do not depend on m. As discussed in Section 4,
this degeneracy is lifted by rotation.

The modes observed in several classes of pulsating stars, including the
Sun, are either of high radial order or high degree. In such cases it is of-
ten possible, in approximate analyses, to make the so-called Cowling ap-
proximation, where the perturbation ®’ in the gravitational potential is
neglected (Cowling 1941). This can be justified, at least partly, by noting
that for modes of high order or high degree, and hence varying rapidly as a
function of position, the contributions from regions where p’ have opposite
sign largely cancel in the solution to Poisson’s equation (38). (On the other
hand, @ should in general be included in numerical computations.) In this
approximation, the order of the equations is reduced to two, greatly sim-
plifying the analysis. In addition, equation (55) directly relates the surface
pressure perturbation and horizontal displacement. Using also equations
(64) and (32), we obtain

()  GM L
&(R) - R® &’

(65)

where M is the total mass; from this it follows, for example, that at the
observed solar frequencies and low or moderate degree the oscillations are
predominantly in the radial direction.

3. Properties of adiabatic stellar pulsations

Here we discuss briefly some of the general properties of stellar pulsa-
tion. Although the computation of linear stellar oscillations is a relatively
straightforward task, particularly in the adiabatic approximation, analyt-
ical techniques, not least the use of asymptotic analyses, have proved ex-
tremely useful in providing insight into the behaviour of the oscillations
and the relation of their frequencies to stellar structure. Hence much of the
discussion centres on the asymptotic behaviour of the oscillations.

From the point of view of helio- and asteroseismic investigations, it
is important to realize which aspects of stellar structure are accessible to
study, in the sense of having a direct effect on the oscillation frequencies.
Within the adiabatic approximation it follows from equations (58) — (60)
that the frequencies are completely determined by specifying p, p, g and
I’y as functions of the distance r to the centre. However, assuming that
the equations of stellar structure are satisfied, p, g and p are related by
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equations (21) — (23). It follows that specifying just p(r) and I'i(r), say,
completely determines the adiabatic oscillation frequencies. Conversely, the
observed frequencies only provide direct information about these ‘mechan-
ical’ quantities. To constrain other properties of the stellar interior, addi-
tional information has to be included, such as the equation of state or equa-
tions (25) and (26) determining the luminosity and temperature gradient
(e.g. Gough & Kosovichev 1990). It is evident that the inferences obtained
in such investigations may suffer from uncertainties in, for example, the
assumed physics.

3.1. CHARACTERISTIC FREQUENCIES

3.1.1. The dynamical frequency

A characteristic time scale for dynamical changes to a star is provided
by the free-fall time over a distance corresponding to a stellar radius, in
the surface gravitational field of the star. The corresponding dynamical

frequency,
GM\/?

Wdyn = <F> ; (66)
gives a measure of the oscillation frequencies of the star; thus the frequency
of the fundamental radial mode is typically of order wqyn. It should be
noticed that wgyn p'/? where p is the mean density of the star. For stellar
models related by homology, the oscillation frequencies scale precisely as
wdyn. This is sometimes expressed by introducing the pulsation constants

5\1/2
Po

(po being the mean density of the Sun), which are then the same for all
homologously related stellar models. For realistic models P,,; depends some-
what on stellar properties; indeed, it is this often fairly subtle dependence
which allows the use of observed oscillation frequencies to obtain informa-
tion about the properties of stellar interiors.

3.1.2. Properties of acoustic waves

For many types of pulsating stars, including the Sun, the relevant oscilla-
tions are acoustic modes, often of fairly high order. In this case an asymp-
totic description can be obtained very simply, by approximating the modes
locally by plane sound waves. They satisfy the dispersion relation

W = K2,

where k is the wave vector. Thus the properties of the modes are entirely
controlled by the variation of the adiabatic sound speed ¢(r). It is instructive
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Figure 3. Propagation of rays of sound in a cross-section of the solar interior. The
ray paths are bend by the increase in sound speed with depth until they reach the
inner turning point (indicated by the dotted circles) where they undergo total internal
refraction. At the surface the waves are reflected by the rapid decrease in density.

to note that, to the extent that the ideal gas law, equation (18), is satisfied,

T kT
L5 (68)
KMy

2N

hence the sound speed is essentially determined by T'/pu.
To describe the radial variation of the mode, we separate k into radial
and horizontal components k, and k, and use equation (56), to obtain

2 12 2 2
kfzw———z%<1—s—l)7 (69)

c2 r2

where again L = /I(l+1) and 5; is defined in equation (62); thus this
relation provides the physical meaning of 5;. This equation can be inter-
preted very simply in geometrical terms through the behaviour of rays of
sound, as illustrated in Fig. 3. With increasing depth beneath the surface
of a star temperature, and hence sound speed, increases. As a result, waves
that are not propagating vertically are refracted, as indicated in equation
(69) by the decrease in k, with increasing ¢; the horizontal component |ky|
of the wave vector, in contrast, increases with decreasing r. Thus the rays
bend, as shown in Fig. 3. The waves travel horizontally at the lower turning
point, r = 7, where w = 57 and hence k, = 0; thus, r is determined by
c(ry)  w

e (70)
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For r < ry, k. is imaginary and the wave decays exponentially. It follows
from equation (70) that the lower turning point is located the closer to
the centre, the lower is the degree or the higher is the frequency. Radial
modes, with [ = 0, penetrate the centre, whereas the modes of highest
degree observed in the Sun, with { > 1000, are trapped in the outer 0.2 %
of the solar radius.

This ray description illustrates the behaviour of acoustic waves propa-
gating through the star. The normal modes observed as global oscillations
on the stellar surface arise through interference between such propagating
waves. In particular, they share with the waves the total internal reflection
at r = r¢. In the case of the Sun, where modes of all degrees up to several
thousand are observed, the oscillation frequencies of different modes thus
reflect very different parts of the star; it is largely this variation in sen-
sitivity which allows the detailed inversion for the properties of the solar
interior as a function of position (see also Chapter II).

3.1.3. An asymptotic descriplion

The above analysis provides a very simple example of the relation between
the qualitative features of a mode and the properties of the relevant char-
acteristic frequency (here the Lamb frequency S5;) in the stellar interior.
Although this simple description is surprisingly successful in many cases, it
ignores a number of important aspects. Near the surface, the scale heights
of sound speed and density become small compared with the local wave
length of the modes, invalidating the treatment in terms of locally plane
sound waves. Furthermore, it ignores the role played by buoyancy as a
restoring force of the oscillations.

A more complete description can be obtained from an asymptotic anal-
ysis of the pulsation equations, (58) — (60). This is most often carried out
in the Cowling approximation neglecting the perturbation ®’ in the gravi-
tational potential. Then the equations of adiabatic oscillation reduce to a
second-order system, which can be treated by means of the JWKB method.
A convenient way to formulate the problem was presented by Gough (cf.
Deubner & Gough 1984), based on earlier analysis by Lamb (1932). Gough
showed that, in terms of the quantity

U = ?p'/div ér (71)
the oscillation equations can be approximated by

d?w .

47 = -K(r)¥, (72)

where

K(r):“—2 l1-“—2c—5—12<1—N2)] : (73)

w?  W? w?
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Here N? and S? were defined in equations (62) and (63), and

9 c? <1 2dH) (74)
wi=—=(1-2—
©  4H? dr )’

where H = —(dIn p/dr)~1 is the density scale height.

In addition to the modes satisfying equation (72), there are modes for
which divér ~ 0; these modes clearly cannot be analyzed in terms of W.
They approximately correspond to surface gravity waves, with frequencies
satisfying

w? ~ gky | (75)

and are usually known as f modes. We return to them in Section 3.2.3.

3.1.4. Regions of mode trapping

The physical meaning of equation (72) becomes clear if we make the iden-
tification K = k% where, as before, k, is the radial component of the local
wave number. Accordingly, a mode oscillates as a function of r in regions
where K > 0; such regions are sometimes, a little imprecisely, referred to
as regions of propagation, with reference to the waves of which the mode is
made up. The mode is evanescent, decreasing or increasing exponentially,
where K < 0. The detailed behaviour of the mode is thus controlled by the
value of the frequency, relative to the characteristic frequencies S}, N and
w.. Note in particular that if w? > w?, N? we approximately recover equa-
tion (69) for k2Z; this is the limit in which the approximation of the mode
by plane sound waves is valid. More generally, the points where K = 0,
marking the transition between the oscillatory and evanescent behaviour,
are called turning points.

As a specific, but important, example Fig. 4 illustrates the characteristic
frequencies in a model of the present Sun; the behaviour obtained in other
main-sequence stars is qualitatively similar. It is evident that w. is large
only near the stellar surface, where the density scale height is small. Also,
in most of the star S; > | N|. It follows that, roughly speaking, a mode may
have an oscillatory behaviour under two circumstances:

- p) w>S8,w>we

—g) w<N.
Examples of propagating regions corresponding to these two cases are
marked in Fig. 4. Modes corresponding to the former case are called p
modes; it follows from the analysis given above that they are essentially
standing sound waves, where the dominant restoring force is pressure.
Modes corresponding to the latter cases are called g modes; here the dom-
inant restoring force is buoyancy, and the modes have the character of
standing internal gravity waves.
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Figure 4.  Characteristic frequencies N/27 (solid line), w./27 (dotted line) and S;
(dashed lines, labelled by {) for I = 1, 10, 50 and 500. The frequencies have been computed
for Model S of Christensen-Dalsgaard et al. (1996). The heavy horizontal lines mark the
trapping regions of a g mode of frequency 100 #Hz and a p mode of frequency 3000 pHz
and degree I = 10.

For the p modes, we may approximately neglect the term in N and,
except near the surface, the term in w.. Thus we recover equation (69); in
particular, the location of the lower turning point is approximately given
by equation (70). Near the surface, on the other hand, 5; < w and may
be neglected; thus the location r = Ry of the upper turning point is de-
termined by w ~ w.. Physically, this corresponds to the reflection of the
waves where the wavelength becomes comparable to the local density scale
height. It should be noticed also from Fig. 4 that w. approximately tends
to a constant in the stellar atmosphere. Indeed, since at least simple stel-
lar atmosphere models are approximately isothermal, we here obtain that
H ~ H,, the pressure scale height, which is furthermore approximately
constant. Consequently,

2 2 = c? _ I'ypg? ~ L'y pmag?
C 0t 4H? dp T AkgT,

(76)

where w, is Lamb’s acoustical cut-off frequency for an isothermal atmo-
sphere (Lamb 1909); here g5 and 7y are the surface gravity and atmo-
spheric temperature, and in the last approximation we used equation (18).
Although w. displays a sharp peak (associated with the region of strong
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superadiabaticity near the top of the convection zone) rising substantially
higher than this limiting atmospheric value, the trapping of the acoustic
modes is dominated by the atmosphere. It follows that modes with fre-
quencies exceeding w, are only partially trapped; such modes loose energy
in the form of running waves in the stellar atmosphere and hence may be
expected to be rather strongly damped.

For g modes, particularly those of low frequency, the behaviour is dom-
inated by the properties of the buoyancy frequency N; in particular, the
turning points are approximately where w = N. The definition of N, equa-
tion (63), is intimately related to the condition for convective stability. In-
deed, it may be shown that the proper dynamical condition for convective
instability is the so-called Ledoux criterion:

dInp 1
— . 77
dlnp < Iy (77)

N?<o0, or

The relation to the Schwarzschild criterion in equation (27) becomes clear,
if the approximation (18) is used to rewrite N2 as

N%x 92§(Vad ~V+4V,) =N+ N2, (78)

where V,, = dIn p/dIn p, and we introduced

dl
nA_ —4nGp
dr

dln g
A2
1 o -9

dlnm, (79)
If the chemical composition is homogeneous, the Ledoux and Schwarzschild
criteria are clearly equivalent. In the presence of chemical inhomogeneities
there is considerable uncertainty about which is the more appropriate cri-
terion; under some circumstances the variation in g may lead to overstable
oscillations (often described as ‘semiconvection’), which potentially mixes
the material in convectively stable regions (e.g. Kippenhahn & Weigert
1990). For computational convenience, however, the Schwarzschild crite-
rion is normally used. Since the general tendency of stellar evolution is to
produce an accumulation of heavier elements near the centre, it leads to a
growing positive V, and hence an increase in N?. Indeed, this is visible in
Fig. 4 in the peak close to the centre. More extreme examples of this will
be discussed in Section 3.3.

3.2. ASYMPTOTIC PROPERTIES

From equation (72) we may obtain an approximate expression for the eigen-
frequencies. Indeed, in terms of the simple description where locally the
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modes are plane waves, it is intuitively obvious that a standing wave re-
quires the total change [ k,dr between turning points to be an integral
multiple of 7. This condition can be made more precise through JWKB
analysis of equation (72) (e.g. Froman & Fréman 1965), which in particu-
lar deals with the behaviour close to the turning points. The result is that
the modes satisfy

- 2 2 72 1/2,
w/ l_”_c_s_l(1_‘i\ )] %271'(”_1/2)7 (80)

w2

where r1 and ry are adjacent zeros of K such that K > 0 between them.
This expression is valid in general, for both p modes and g modes. However,
substantial simplifications can be achieved in each of the two cases, as
discussed below.

For completeness we note that in some cases there may be more than
one region in the star where K > 0, at a given frequency. In such cases the
properties of the mode are dominated by that region where its amplitude
is largest. However, this sometimes leads to mized modes, with properties
determined by two separate regions. Examples of such modes are discussed
in Section 3.3.

3.2.1. p modes
For high frequencies we may assume that | N?/w?| < 1. Then equation (80)
simplifies to

vy 9 971/2
w/ [—“—C—S—l] 4 = 1/2), (81)

where, as discussed above, ry ~ 7, and r9 ~ R;. Further simplification
results by noting that w./w < 1 except near the upper turning point. As
a result, it is possible to expand the integral to obtain

R 2 1/2 ,
w/” l —S—l] d?:ﬂ[n—l—a(w)] (82)

(e.g. Christensen-Dalsgaard & Pérez Hernandez 1992), where «, which as
indicated in general depends on frequency, results from the expansion of
the near-surface behaviour of w.. An expression of this form might in fact
have been written down immediately on the basis of equation (69), by
postulating an unknown phaseshift at the surface. It may also be written
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2 \1/2 3
F(w):/f(l—#) %. (84)

That the observed frequencies of solar oscillation satisfy the simple func-
tional relation given by equation (83) was first found by Duvall (1982); this
relation is therefore commonly known as the Duvall law.

For low-degree modes these relations may be simplified even further,
by noting that in the integrand in equation (84) (...)"/? differs from unity
only close to the lower turning point which, for these modes, is situated
very close to the centre. As a result it is possible to expand to integral to
obtain, to lowest order, that

where

R dr

T
Flw) ~ — —w = 85
(= [ 8wl (35)
thus equation (83) may be approximated by

" (n+ L/24 o) ' (86)

I
0o ¢
A more careful analysis shows that for low-degree modes L should be re-

placed by? I 4+ 1/2 (e.g. Vandakurov 1967; Tassoul 1980). Thus we may
write equation (86) as

Wnl
2T

Av = lQ /OR dC—T] - (88)

is the inverse of twice the sound travel time between the centre and the
surface. This equation predicts a uniform spacing Av in n of the frequencies
of low-degree modes. Also, modes with the same value of n +1/2 should be
almost degenerate,

Unl =

l 1
2<n+§+Z+Q)AI/, (87)

where

Upl = Vp—-11042 - (89)

This frequency pattern has been observed for the solar five-minute modes
of low degree and may be used in the search for stellar oscillations of solar

type.

?Note that, in any case, except at the lowest degrees this is an excellent approximation
to the original definition of L; thus we shall use the two definitions interchangeably.
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The deviations from the simple relation (87) have considerable diag-
nostic potential. The expansion of equation (84), leading to equation (86),
can be extended to take into account the variation of ¢ in the core (Gough
1986); alternatively it is possible to take the JWKB analysis of the oscil-
lation equations to higher order (Tassoul 1980). As a result, one finds a
departure from the approximate frequency coincidence obtained in equa-
tion (89),

Av Rdedr

dnl = Vpl = Vp1142 =~ — (41 + G)Wl/l ) 1

(90)

here the integral is predominantly weighted towards the centre of the star,
as a result of the factor 7~! in the integrand. This behaviour provides an
important diagnostics of the structure of stellar cores. In particular, we
note that, according to equation (68), the core sound speed is reduced as
i increases with the conversion of hydrogen to helium. As a result, d,; is
reduced, thus providing a measure of the evolutionary state of the star (e.g.
Christensen-Dalsgaard 1984, 1988; Ulrich 1986; Gough & Novotny 1990).

It is often interesting to investigate the effects on the frequencies of small
changes to the model. This is the case, in particular, for the Sun where
helioseismic analyses indicate that the structure of solar models is already
quite close to the true solar structure (¢f. Chapter II). Such frequency
changes may be estimated quite simply from the Duvall law. For simplicity,
we consider two models of the same surface radius; the more general case
can be addressed by first normalizing the frequencies with the dynamical
frequency wayn (cf. Section 3.1.1). We label the models with the superscripts
(1) and (2), and introduce the differences dw,; = wg) — ‘*’7(111)7 dyc(r) =
A (r) — eW(r) and da(w) = aP(w) — aD(w). By substituting ¢ (r) =
()4 6,¢(r) and aD(w) = aD(w) + a(w) into equation (83), retaining
only terms linear in d,c, da and dw, one obtains

bwy, R L3c? i/ b,cdr da(wy,
Snl ! ~ / (1 — ﬁ) —— 4+ ( l) ) (91)
Wni - riws, c c Wni
where 12
R 22\ T dr da
nl = 1- Tt/ 2
S /rt ( TQWTQLZ) ¢ Tdw (92)

and we have suppressed the superscript (1). This relation was first de-
rived by Christensen-Dalsgaard, Gough & Pérez Hernandez (1988). Equa-
tion (91) may be written as

bwny, Wn,
Snl wnll = Hl <Tl) + H?(wnl) ) (93)
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R c? -1/ b.cdr
Haw) = | (1 - w) oo (94)

Hay(w) = géa(w) . (95)

where

and

Some properties of this equation were discussed by Christensen-Dalsgaard,
Gough & Thompson (1989), who pointed out that H;(w/L) and Hy(w) can
be obtained separately, to within a constant, by means of a double-spline
fit of the expression (93) to p-mode frequency differences. The dependence
of Hy on w/L is determined by the sound-speed difference throughout the
star; in fact, it is straightforward to verify that the contribution from H; is
essentially just an average of §,¢/c, weighted by the sound-travel time along
the rays characterizing the mode. The contribution from Hy(w) depends on
differences in the upper layers of the models.

3.2.2. g modes
For g modes in general w? < S?, and we approximate equation (73) by

K(r) ~ L—2 <N2 - 1) . (96)

w2

The mode is assumed to be trapped between two zeros r1 and r9 of K, and
hence, according to equation (80), the frequencies are determined by

r 9 1/2 ,
L/ (N —1) (17:(71—1/2)%. (97)

w2

We have here implicitly assumed that N has a single maximum, N = Ny,ay,
so that at a given frequency the two turning points r; and r, are uniquely
defined; otherwise, as discussed above, a more complex behaviour of the
frequencies may result (see also Christensen-Dalsgaard, Dziembowski &
Gough 1980). It is evident from equation (97) that for g modes w < Npyax.
Also, for a given mode order n, w — Ny as [ — oo.

Figure 4 shows that in the Sun the region of g-mode trapping is located
deep in the stellar interior; the same is true of other stars with extensive
outer convection zones. Thus it is of interest to estimate whether the modes
are likely to be visible on the stellar surface, given the extended intervening
evanescent region. The analysis is particularly simple in the approximately
adiabatically stratified convection zone, where N2 ~ 0. There, it follows
from equations (72) and (73) that

20 U1+ 1)

—_— Y
drz = p2

v, (98)
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with the solution
U, (99)

Thus for low degree the decrease in the mode amplitude through the con-
vection zone is modest. On the other hand, it is evident that higher-degree
modes are efficiently trapped: since the radius at the base of the solar
convection zone is approximately r., ~ 0.7, the decrease in amplitude for
[ = 10, say, is by a factor of about 35. Furthermore, modes with frequencies
approaching Ny, are trapped even more deeply and hence more efficiently.
Hence one should probably not expect to see evidence for high-degree g
modes on the surface of solar-like stars.

For high-order, low-degree g modes w is much smaller than N over most
of the interval [ry, ro]. This suggests that a similar approximation to the one
leading to equation (86) should be possible. In fact, a proper asymptotic
analysis (Tassoul 1980) shows that the frequencies of low-degree, high-order

g modes are given by
T2 __dr
L N—
T1 T

w= T(n+1/24+a,)’

where a, is a phase constant. Introducing the period Il = 27 /w, this may
also be written as

(100)

I, l
where )
My = —27 (102)

/TQ N
T1 T

Thus in this case the periods are asymptotically equally spaced in the order
of the mode. This behaviour is extremely important for the interpretation
of pulsations of compact stars.

3.2.3. [ modes
As noted in equation (75), a star also allows f modes with frequencies

determined by
GM

R3
Thus, to this approximation, the frequencies scale precisely as wqyn and
hence depend only on the mean density of the star but not on its detailed
internal structure. The modes have zero divergence of the displacement and
hence, according to equations (36) and (47), ép/p ~ ép/p ~ 0; it may be
shown that the displacement eigenfunction is exponential,

57" X eXp(khr) 3 (104)

W~ gk =1 (103)
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as is indeed found to be the case for surface gravity waves in deep water.

A more careful analysis must take into account the fact that gravity
varies through the region over which the mode has substantial amplitude.
The result is that the frequencies satisfy w?/gskn = 1 — e(ky,), where

f(r—=R)p e2kur qp

= 2L7" + 3
‘ * R [ pe?fnr dr

(105)

(Gough 1993), which leads to a weak dependence of the frequencies on the
density structure of the star. Some properties of this relation were discussed
by Chitre, Christensen-Dalsgaard & Thompson (1998).

3.2.4. Frequencies of a solar model

To illustrate some of the asymptotic properties discussed here, it is instruc-
tive to consider numerically computed frequencies of adiabatic oscillation
of a solar model, shown in Fig. 5. For clarity modes of given radial order
n have been connected. It is immediately evident that the modes fall in
two broad classes, corresponding to the p and the g modes; somewhat con-
fusingly, at high degree the f-mode frequencies behave superficially rather
like the frequencies of the p modes, despite their different physical nature.
Also, the g modes clearly show the convergence towards the internal maxi-
mum Np,ay in the buoyancy frequency (the secondary accumulation of the
g modes is related to a very weak secondary maximum in N, hardly vis-
ible in Fig. 4). Following common convention, we have assigned negative
orders to the g modes, such that, at least in the limit of low frequency,
|n| is the number of radial nodes in the eigenfunction (e.g. Scuflaire 1974;
Osaki 1975); also, the f modes are assigned n = 0. With this convention,
frequency is an increasing function of n at given [, for all n.

3.3. MIXED MODES

In stars with convective cores the behaviour of the frequencies as the star
ages may get rather complex, as a result of the variation in the buoyancy
frequency N. This is illustrated in Figure 6 for the case of a 2.2Mg ev-
olution sequence. The convective core is fully mixed and here, therefore,
the composition is uniform, with V,, = 0 [¢f. equations (78) and (79)].
However, in stars of this and higher masses the convective core generally
shrinks during the evolution, leaving behind a steep gradient in the hy-
drogen abundance X, as shown in Figure 6a. This causes a sharp peak in
V, and hence in N. When plotted as a function of mass fraction m/M,
as in panel (b) of Figure 6, the location of this peak is essentially fixed
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Figure 5. Cyclic frequencies v = w/27, as functions of degree [, computed for a normal
solar model. Selected values of the radial order n have been indicated.

although its width increases with the shrinking of the core®. However, as
illustrated in Figure 6¢c, the location shifts towards smaller radius: this is a
consequence of the increase with evolution of the central density and hence
the decrease in the radial extent of a region of given mass. This also causes
an increase in gravity ¢ in this region and hence in N, visible in the fig-

*The erratic variation in N in the chemically inhomogeneous region is caused by small
fluctuations, introduced by numerical errors, in X (m).
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Figure 6. (a) Hydrogen content X against mass fraction m/M for three models in a
2.2M¢ evolution sequence. The solid line is for age 0, the dotted line for age 0.47 Gyr
and the dashed line for age 0.71 Gyr. Only the inner 40 per cent of the models is shown.
(b) Scaled buoyancy frequency, expressed in terms of cyclic frequency, against m/M for
the same three models. In the scaling factor, R and Ry are the radii of the actual and the
zero-age main sequence model, respectively. For the model of age 0.71 Gyr, the maximum
value of (R/Ro)3/2 N/2m is 2400 pHz. (c) Scaled buoyancy frequency N (heavy lines) and
characteristic acoustic frequency S; for [ = 2 (thin lines), for the same three models,
plotted against fractional radius r/R.

ure. To take out the essentially trivial homological variation as the stellar
radius changes, the characteristic frequencies have been scaled by R3/2 in
Figure 6 (cf. equation 66): it is evident that S;, and N in the outer parts
of the model, are then largely independent of evolution. Thus the stellar
envelope essentially changes homologously, while this is far from the case
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for the core; it follows that stellar oscillations sensitive to the structure of
the core might be expected to show considerable variation with evolution.

1000
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Figure 7. Oscillation frequencies, as functions of age, in a 2.2M evolution sequence.
To eliminate the effect of the reduction in dynamical frequency with increasing radius R,
the frequencies have been scaled by (R/Ro)’/2, Ro being the ZAMS radius of the model.
Modes of the same radial order have been connected. The solid lines are for radial modes,
of degree I = 0, the dotted lines are for { = 1 and the dashed lines for I = 2.

To illustrate the effects on the oscillation frequencies of these changes
in the buoyancy frequency outside a convective core, Figure 7 shows the
behaviour of the frequencies, as functions of stellar age, for a 2.2Mg evo-
lution sequence. These models may represent § Scuti stars; characteristic
frequencies at a few ages in the sequence were illustrated in Figure 6. As
in that figure I have applied the scaling according to wgyn. As a result, the
frequencies of largely acoustic modes, including the radial modes, change
very little with age. It should be noticed also that except at low order, the
acoustic modes exhibit a distinct pattern, with a close pairing of the radial
and [ = 2 modes. Such a pattern of closely-spaced peaks is familiar from
p-mode asymptotics (cf. equation 87).

The most striking feature of the computed frequencies, however, is the
interaction for = 1 and 2 between the p modes and the g modes. At zero
age, there is a clear distinction between the p modes, with frequencies ex-
ceeding that of the lowest radial mode, and the g modes with {requencies
below 200 yHz. However, with increasing age the scaled g-mode frequen-
cies increase; this is a consequence of the increase in the scaled buoyancy
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Figure 8.  Scaled eigenfunctions for the p;({ = 2) mode (continuous line) and the
p2(l = 2) mode (dashed line) in the vicinity of the avoided crossing near age 0.4 Gyr,

(R/Ro)*/?v = 400 uHz in Figure 7. (a) Age 0.36 Gyr. (b) Age 0.39 Gyr. (c) Age 0.44
Gyr.

frequency with age (cf. Figure 6¢) which effectively acts to “pull up” the
frequencies of the g modes. As was first found by Osaki (1975), this leads
to an interaction between the p and g modes which takes place through
a sequence of avoided crossings. At the avoided crossing the two modes
exchange nature, while still maintaining the original labelling. Thus, for
example, the n = 1 mode for [ = 2, which at age zero is a purely acoustic
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mode of frequency 310 pHz takes on the nature of a g mode trapped just
outside the convective core at the age 0.32 Gyr and at the age 0.4 Gyr
again changes back to being predominantly an acoustic mode.

This behaviour is further illustrated by considering the eigenfunctions
of these modes; examples of eigenfunctions near the p; — pa(l = 2) avoided
crossing at age 0.4 Gyr are shown in Figure 8. Before the avoided crossing,
the p; mode has a substantial amplitude near the edge of the convective
core, and hence to a large extent behaves like a g mode, whereas the p; mode
is predominantly a p mode, with largest amplitude in the outer parts. At
the point of closest approach of the frequencies, at an age of 0.39 Gyr, both
modes have a mixed character, with substantial amplitudes in the deep in-
terior and near the surface, whereas after the avoided crossing the p; mode
looks like a g mode, whereas the p; mode largely behaves like a p mode.
It should be noted that this behaviour introduces a potential difference
between the mathematical classification of the modes and their physical
nature: modes with order n > 0, which in simple models would be p modes,
may take on the character of g modes. Also, it is evident that the presence
of the g-like modes in the p-mode spectrum, particularly at late evolution-
ary stages, complicates the analysis of observed frequencies. Dziembowski
& Kroélikowska (1990) pointed out that mode selection might be affected
by the larger energy, at given surface amplitude, of the modes that behave
like g modes, thereby restricting the choice of modes in the identification.
However, such arguments depend on the mechanisms responsible for excit-
ing the modes and limiting their amplitudes, which are so far incompletely
understood. It should also be noted that if g-mode like pulsations could in
fact be identified, their frequencies would give strong constraints on con-
ditions in the region just outside the stellar core. In fact, Dziembowski &
Pamjatnykh (1991) pointed out that measurement of g-mode frequencies
might provide a measure of the extent of convective overshoot from the
core.

3.4. VARIATIONAL PRINCIPLE.

The formulation of the oscillation equations given in equation (50) is the
starting point for powerful analyses of general properties of stellar pulsa-
tions. For convenience, we write it as

w?ér = F(ér), (106)

where the right-hand side is the perturbed force per unit mass; as discussed
in Section 2.4, this can be regarded as a linear operator on ér, as indicated.

The central result is that equation (106), applied to adiabatic oscilla-
tions, defines a variational principle. Specifically, by multiplying the equa-
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tion by pdr* (“+” denoting the complex conjugate) and integrating over the
volume V' of the star, we obtain

s Jyr* - F(ér)pdV
- v |éx2pdV

(107)

We now consider adiabatic oscillations which satisfy the surface bound-
ary condition given by equation (64). In this case it may be shown that
the right-hand side of equation (107) is stationary with respect to small
perturbations in the eigenfunction ér (e.g. Chandrasekhar 1964). From a
physical point of view, the assumptions ensure that the pulsating star is
a conservative mechanical system; in particular, when ép = 0 there are
no forces applied to the star from the outside. The stationarity then just
reflects Hamilton’s principle for a conservative system.

A very important application of this principle concerns the effect on the
frequencies of perturbations to the equilibrium model or other aspects of the
physics of the oscillations. Such perturbations can in general be expressed
as a perturbation éF to the force in equation (106). It follows from the
variational principle that their effect on the frequencies can be determined
as

sw? — Jy 6r* - 6 F(ér)pdV
Jv |6r[2pdV ’

(108)

evaluated using the eigenfunction ér of the unperturbed force operator.
This equation is of course somewhat formal; specific applications of it will
be discussed below, as well as in Chapter II.

4. Effects of rotation

So far, we have considered only oscillations of a spherically symmetric star;
in this case, the frequencies are independent of the azimuthal order m. De-
partures from spherical symmetry lift this degeneracy, causing a frequency
splitting according to m.

The most obvious, and most important, such departure is rotation. A
simple description of the effects of rotation can be obtained by first not-
ing that, according to equations (52) and (54), the oscillations depend on
longitude ¢ and time ¢ as cos(m¢ — wt), i.e., as a wave running around
the equator. We now consider a star rotating with angular velocity 2 and
a mode of oscillation with frequency wg in a frame rotating with the star;
the coordinate system is chosen with polar axis along the axis of rotation.
Letting ¢’ denote longitude in this frame, the oscillation therefore behaves
as cos(m¢’ — wpt). The longitude ¢ in an inertial frame is related to ¢’ by
¢’ = ¢ — Qt (cf. Fig. 9); consequently, the oscillation as observed from the
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g

Figure 9. Geometry of rotational splitting, in a star rotating with angular velocity
Q. The point P has longitude ¢’ in the system rotating with the star and longitude
¢ = ¢’ + Qt in the inertial system.

inertial frame depends on ¢ and ¢ as
cos(m¢ — m§QU — wot) = cos(me — wpt) ,

where
W = wo + m . (109)

Thus the frequencies are split according to m, the separation between ad-
jacent values of m being simply the angular velocity; this is obviously just
the result of the advection of the wave pattern with rotation. It should be
noticed that, with the Cesme sign convention introduced in equation (49)
(¢f. the Appendix), the frequency increases with increasing m.

4.1. EFFECTS OF SLOW ROTATION

This simple description contains the dominant physical effect, i.e., advec-
tion, of rotation on the observed modes of oscillation, but it suffers from two
problems: it assumes solid-body rotation, whereas the Sun, and presumably
other stars, in fact rotate differentially; and it neglects the effects, such as
the Coriolis and centrifugal forces, in the rotating frame. Differential ro-
tation can be accounted for, roughly speaking, by replacing  in equation
(109) by a suitable average; a natural expectation is that the appropriate
weight is the energy density p|ér|? in the mode. To obtain a full description,
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including also the additional forces in the rotating frame, we must modify
equation (50) appropriately. Here we consider only slowly rotating stars
where the centrifugal force and other effects of second or higher order in 2
can be neglected; in particular, the distortion of the equilibrium structure
caused by rotation is neglected. Then it is relatively simple to write down
the required modification to equation 50); the result is, in an inertial frame,

1 /
wir=-Vp —g' - p—g + 2mwQér — 21w X ér (110)
p p

where € is the rotation vector, of magnitude Q and aligned with the rotation
axis. The first term resulting from rotation is the O(Q) contribution from
advection, as discussed above; this can be seen by combining it with the
left-hand side to obtain, to O(Q), (w — m&)?. The last term is the Coriolis
force (note that the velocity associated with the oscillation is —iwdr).

The terms arising from rotation obviously correspond to a perturbation
to the force operator F in equation (106); hence the effect on the oscillation
frequencies can be found from equation (108). The result can be written on
the form

R pm
Wnlm = Wnio + m/ / K1 (r,0)Q(r,0)rdrdd , (111)
o Jo

where the kernels K, can be calculated from the eigenfunctions for the
non-rotating model. It might be noted that the kernels depend only on m?,
so that the rotational splitting wyp, — wpio is an odd function of m. Also,
the kernels are symmetrical around the equator (this follows immediately in
the approximation where the kernels are determined by p|ér|?); as a result,
the rotational splitting is only sensitive to the component of £ which is
similarly symmetrical.

The general expression for the rotational kernels is quite complicated
and will not be given here (e.g. Cuypers 1980; Gough 1981). It simplifies
considerably in the case where Q = Q(r) is assumed to be a function of
r alone. The corresponding kernels do not depend on m, so that equation
(111) predicts a uniform frequency splitting in m. This is often written on
the form

R
OWnim = Wnlm — Wnlo = mﬁnl/ K (r)Q(r)dr, (112)
0

where

](nl — R(f? ‘I’ fﬁ - 2L—1€T€h - L_Qfﬁ) TQP , (113)

| (g 4821766 - 1726) rpar
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Figure 10. Kernels K,; for the frequency splitting caused by spherically symmetric
rotation (cf. eq. 113), for a model of the present Sun. In a) is plotted RK;(r) for a mode
with{=1,n = 22 and v = 3239 pHz. The maximum value of RK,;(r)is 62. In b) is shown
the same mode, on an expanded vertical scale, (continuous line) together with the modes
1 =20, n =17, v = 3375 pHz (short-dashed line), and | = 60, n = 10, v = 3234 pHz
(long-dashed line). Notice that the kernels almost vanish inside the turning-point radius
ry, and that there is an accumulation just outside the turning point.

and
R
| (g6 -2n7"a - 172g) rtpar
ﬁnl =20 R ; (114)
| (&+&)
0
here L2 = (I + 1). Examples of the kernels are shown in Fig. 10.
By construction K,; is unimodular, i.e., [ K, (r)dr = 1. Hence for
uniform rotation, where = Qg is constant,
0wl = MPBufls . (115)

In this case the effect of rotation is completely characterized by the constant
B [note that, following Ledoux (1951) 3, is often written as 8,1 = 1 —C\y,
where C, is the Ledouz constant].
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For high-order or high-degree p modes the terms in &2 and &2 dominate;
Bri is then close to one. Thus the rotational splitting between adjacent m-
values is given approximately by the rotation rate. Physically, the neglected
terms in equation (114) arise from the Coriolis force; thus rotational split-
ting for p modes is dominated by advection. For high-order g modes, on
the other hand, we can neglect the terms containing &,, so that

1
P l= 75 (116)
In particular, the splitting of high-order g modes of degree 1 is only half
the rotation rate.

4.2. EFFECTS OF MODERATE ROTATION ON STELLAR PULSATION

The perturbation formalism presented in the previous section is certainly
sufficient for application to helioseismology and asteroseismology of white
dwarfs. The Sun is a indeed a very slow rotator. We shall see later why, in
spite of considerably faster rotation, the white dwarfs represent an easy case
too. Amongst stars that may exhibit solar-like pulsation, rotation rates ten
times the mean solar rate are not rare, while for the upper-main-sequence
pulsators equatorial rotation rates fifty times solar must be regarded as
typical. In these cases we have to go beyond the linear approximation in 2

Soufi et al. (1998) developed a perturbation formalism leading to closed
expressions for rotational frequency corrections, accurate to O(92?). The
formalism is for any shellular (2 = Q(r)) rotation. Here we shall outline
only the version for a uniform rotation. This is in fact sufficiently com-
plicated. Earlier accurate treatments of the second-order effects rotation
include papers by Chlebowski (1978), Saio (1981), Gough & Thompson
(1990) and Dziembowski & Goode (1992).

4.2.1. Effects on stellar structure
Effects of the centrifugal force must now be included in the equilibrium
structure. Thus, to the body force f in equation (8) we add

foen = Q*wa,, , (117)

where w denotes the distance from rotation axis and a, the corresponding
unit vector. In spherical coordinates we have

0? 0?
foen = 5 sin f(sin fa, + cosfag) = ?{(QTaT — V[r?Py(cos0)]} . (118)

The latter form separates the centrifugal force in two parts. The first causes
a modification of the mean radial structure of the star. The second part
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induces a distortion from sphericity described by the Legendre polynomial
Py(cos ). A similar separation holds for nonuniform rotation. However, in
general the distorting part is not derived from a potential and, in the 6-
dependent rotation rate, the distortion involves higher-order polynomials.
In the case of the three-term rotation law such as used in the representation
of the photospheric rotation of the Sun the distortion involves terms up to
PlO-

Since our target accuracy is O(92®) we may treat the centrifugal force
as a linear perturbation. Our small quantity is

e:( L ) . (119)
Wdyn

We leave to the readers showing that, if the density does not decrease
inward, then equation (119) implies that

Q%r
(g—o) <e. (120)

Therefore the condition guarantees that the centrifugal force everywhere
within the star is much smaller than the gravity force which justifies lin-
earization of the equations for stellar structure about a spherically sym-
metric equilibrium. With the assumed accuracy, we may represent pressure
on the form

P = po(r) + €[po(r) + pa(r) Po(cos )] . (121)

In a similar manner we may represent density, p and the gravitational po-
tential, ®. If we use these representations in the modified equation (19), we
get, collecting separately linear terms independent of # and those propor-
tional to P,

dpo . d® ddy  2rpQ?

—_— 122
dr +po dr +po dr 3 7 ( )
dp, _ ddg dd, —2rpQ?
) = 12
dr + P2 dr +po dr 3 ’ (123)
and
_ 5 022
P2 = —po (<I>z +—3 ) : (124)

From Poisson’s equation (8), which is already linear, we have

d [ ,d, -
— [ — 60, 4+ 47Gr*p, =0 fors=0and 2. (125)
dr dr
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Note that we have one equation less for the spherical part of the perturba-
tion (subscript “0”) than for the nonspherical part (subscript “2”). This fact
has very important consequences. In the former case the system of equa-
tions is underdetermined and we have to consider the constraint of thermal
balance to determine the modification to stellar structure. In the case of
nonradial perturbation, on the other hand, the distortion is completely de-
termined by equations (123) — (125). This may appear advantageous, but
in fact it creates a serious problem, known as the von Zeipel paradox (von
Zeipel 1924). Having determined pz and pg, one may evaluate T, and, sub-
sequently with the use of equation (16), the corresponding perturbation of
Frad- In general, the condition of thermal balance cannot be satisfied. Al-
though the problem was recognized 75 years ago, we still do not have a fully
satisfactory solution. We know that a fluid flow known as the meridional
circulation arises but its role in material mixing and in determining the law
of rotation, Q(r, @), is still not fully understood.

Here, we assume that uniform rotation is an adequate approximation.
The only rotational effect included in the mean, spherically symmetric,
model is a modification of equation (23), which becomes

% = —(go - ;rQZ)po . (126)
Thus the spherically symmetric part of the centrifugal perturbations has
been absorbed in the mean structure of the model. This modification im-
plies certain modifications of the normal mode frequencies. In order to
evaluate the implied frequency shift we have to specify the nonrotating ref-
erence model; furthermore, we must remember that the centrifugal force
has affected the past evolution of the star. We have various option. Here,
following Soufi et al. (1998), we choose to compare rotating and nonrotating
models of the same mass at the same effective temperature. To compute the
evolution of the rotating models, we specify the total angular momentum
and we assume that it is conserved during the evolution while Q remains
uniform.

To determine the nonradial distortion we solve equation (125) for s = 2

with
_ 1dpo { = Q2p2
=—— 19 127
2 70 dr ( 2+ 3 , (127)

which easily follows from equations (123) and (124). The boundary condi-
tions are ®5 x 72 for r — 0 and ®, « 73 for r — R. It is not difficult to
show that a unique solution always exists. Once we know ®,, we may de-
termine py and py with the help of equations (123) and (126), respectively.
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4.2.2. Effects on stellar oscillation frequencies and eigenfunctions

The corrections to w due to the Coriolis force and due to the nonradial
part of the centrifugal force may now be evaluated by using the variational
principle, equation (106). To determine the perturbation of the operator F
we need — in addition to ®5, py, and p2 — also the perturbation of I'1(p, p),
which perhaps cannot be neglected. This may be obtained immediately
from the equation of state, given pg, and p;. We write the operator in the
following form:

F = fo + Efg ) (128)

with
fo = f070 — 21w} X ér .

The operator Fyo includes the spherically symmetric centrifugal pertur-
bation. Fy in addition contains the Coriolis term, considered already in
the previous section. The perturbed operator eF; reflects the centrifugal
distortion; it contains terms proportional to Py or dP,/d6.

For the displacement vector, dr, the representation given in equation
(54) is not sufficiently general, since the Coriolis force acting on the poloidal
displacement generates a toroidal component. Thus we write

or = ér, + or (129)

where ér}, is given by equation (54) and

RSO (LD DY ]
ér, = Var 7 i S8 90 e The exp(—iwt)| . (130)

By definition we have
curl,ér, =0, ér, =0, divér,=0, (131)

where curl, is the radial component of the curl operator.

The poloidal components corresponding to a spherical harmonic Y,
generate toroidal components x Y. Taking curl, of equation (54) we
may obtain explicit formulae, accurate to O(9?), which express & ;41 in
terms of &.; and &n. These will not be reproduced here. We note only
that although the toroidal components are of order €, their effect on the
frequencies is of order O(9?) x e.

In the perturbation method of Soufi et al. (1998) the basic poloidal
eigenfunctions are obtained as solutions to the equation

pw?br, = Fobr, , (132)

which is separable in terms of spherical harmonics. It is therefore almost
as easy to solve as in the case of no rotation, except that now the operator
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depends on m. The solutions are eigenfunctions &, ;, &hp and eigenvalues w
accurate up to O(€). Hence, w includes the Ledoux-type linear frequency
splitting, given by equation (115). It also contains some higher-order effects
resulting from the Coriolis force.

The variational formula (108) is used to account for the centrifugal
distortion and the feed-back effect of the toroidal components. We thus get

bw = 8w + baw + O(QY) (133)
where
1 " w
bpw = F/‘srt ) (56“ + Q2 X 61}) pdV (134)
€ *
b = = / 6 - Fy(bry)pdV | (135)
and
I:/|6rp|2pdV. (136)

Note that ér, and ér; are calculated up to O(Q) and O(Q?), respec-
tively. Thus, the formulae include all cubic terms. One important reason
for keeping these terms is that they affect inferences of the rotation rate.

Let ‘*’7(;1)271 denote the frequency of the mode of radial order n, degree [ and
azimuthal order m, as measured in the observed system and let

RO

Q ol = nim nl—m 1
(@i 2m(1 - Cp) (137)

be the rotation rate inferred from this mode and his retrograde partner. The
quadratic effects do not influence (Q),,1,, but the cubic effects do. Thus if
is sufficiently large (£2),.1,,, would be different for different modes, indicating
nonuniform rotation, even though the true rotation is uniform.

The explicit, general, expression for éw is formidable and therefore we
do not reproduce it here. However, there are relatively simple expressions
in special cases, valid up to O(Q?). In the case of radial pulsation we have
an exact expression first found by Simon (1969),

402
For nonradial p modes there is a contribution of the same order from éyw.
However, the total correction is dominated by dqw. The explicit formula
for dqw is quite complicated. However, starting from the general expression
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(e.g. Gough & Thompson 1990; Dziembowski & Goode 1992), and neglect-
ing ®; in equations (124) and (127), which causes only a few per cent error,
one gets the following simple asymptotic formula valid for w > wqyn:

3 3
dw ~ bqw ~ %Qz,wﬁ(%) ; (139)
where 2 2
™ L — 9
Qum = 27r/0 A6 sin 0.7,V |2 = % , (140)
and

(7) =7/ (5) ortoav. (141)

I being defined by equation (136), is the average of the cube of the relative
radius weighted with mode energy. This factor is typically in the range 0.3-
0.4. To appreciate the magnitude of this second-order correction let us note
that for solar-like p modes (w/wdyn)? ~ 10% and C,; ~ 1/n ~ 1072 and,
with the solar rotation rate, /w ~ 10~%. Thus the second-order correction
in the corotating system becomes bigger than the first-order effect. In the
inertial system the linear term still dominates and the structure of the
multiplets (n,!) remains very nearly equidistant and symmetric about the
m = 0 component. (Note the m?-dependence of the second-order correction
as opposed to the m-dependence of the first-order correction.) However,
already at a rotation rate five times faster than in the Sun the asymmetry
is easily visible. At the rotation rates typical for the upper-main-sequence
pulsators the simple linear structure of the multiplets is not recognizable
even for low-order modes.

For g-modes, in the limit w < Lwqy, we have after Chlebowski (1978)

m*Q?4L?(2L* - 3) -9

w  2L%(4L? - 3) (142)

bw o~ bw ~ —

In oscillating white dwarfs Q/w ~ 1072 but at [ = 1 and 2 the [-dependent
factor is also ~ 107%; hence we get a correction which is much smaller than
the linear one, equations (115) and (116).

4.2.3. The case of near degeneracy

The perturbation method described above is not applicable in the cases of
the near degeneracy of the modes coupled by rotation. Let us consider two
modes, say a and b, whose frequencies with corrections calculated according
to equation (132) satisfy

Whd > Wad —whd ~ 2, (143)
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and such that
Aap = Apa = / §r7 - Fy(6ry)dV £ 0. (144)

In order to see when the last condition is satisfied we note that the angular
part of Ay can be expressed in terms of

Qlolyma,my = /dO sin OPQYITG*YITI’ . (145)

It is easy to see that this does not vanish if
mg=mpy and I, =10, or l,=0+2. (146)

The situation that equation (141) is satisfied and I, = I, £ 2 is not rare. In
fact, it may happen systematically for high-order p modes, as a consequence
of the near-coincidence of the frequencies found asymptotically (cf eq. 89).
With I, = [l;, condition (141) may be occasionally satisfied at avoided
crossings.

In the cases where equations (141) and (143) are valid we must use a
perturbation formalism for the case of degeneracy; thus we must seek the
solution of

pwiér = (Fy + eFy)(6r) , (147)

on the form

ér = Aa6ra7d + Ab6rb7d . (148)

The standard procedure, consisting in multiplying equation (146) by 6r27d
and by érj 4 and integrating over V, leads to a homogeneous system for A4,
and Ap. The condition for nonzero amplitudes yields two frequencies, w,
and w,, which are given by the following expressions:

D - D
w2 = S+ and W} = S , (149)
2 2
where
S = wg,d + wl?,d ’
and
_ 2 2 \2 4/\375
D= (wa,d - <'ub,d) + IaIb ’

if we choose
Wad < whd -

For each eigenfrequency there are associated amplitude ratios

Ab Aab <Aa) Ab a
0 s G d — ) = — 1
<Aa>a Ih(w? —wig) . Ay D(wf —wiy) (150)
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Figure 11. Effects of rotation, as seen from an inertial frame, on the frequencies of close
{ =0 and 2 modes. At each step upward we add a new effect. At the lowest level we give
frequencies in a model of a slightly evolved nonrotating 1.8 M, star at log Teq = 3.876. At
subsequent levels we use a a model of a uniformly rotating star with the same parameters.
At ZAMS the star had Vot = 100 km/s. The current value is 92 km/s. First, we see a
small frequency decrease, similar for both modes, due to the modification of the radial
structure. At the next level, we see mainly the frequency splitting by 2. The effect of
the Coriolis force is rather small for these p modes. The éw term is nearly negligible for
! = 0; however, it is quite large for I = 2, as a result of which the multiplet no longer
has an equidistant appearance. Note that éw pushes the m = 0 modes toward the { =0
mode. This enhances the role of mode coupling which moves apart the interacting modes.
This is the most significant effect of rotation on radial mode frequencies. Finally, we see
that coupling with the components of a nearby ! = 4 multiplet has a noticeable effect on
frequencies of all six modes.

There may be more than two rotationally-coupled nearly degenerate
modes. In particular, for higher-order p modes, a mode with [ = 4 may
satisfy the conditions with the [ = 0 and | = 2 pair, hence entering into the
interaction. There is an obvious generalization of the procedure described
above to the case of three interacting modes.

Figure 11 illustrates various contributions to the rotational frequency
perturbations in the case of close [ = 0 and 2 modes. The model considered
can be taken as representative for § Scuti stars of luminosity class IV-V. The
rotational velocity of 92 km /s is typical, if not somewhat low, for this type of
object. The two modes are vibrationally unstable. Evidently the quadratic
effects are very significant: the equidistant structure is not recognizable.
We see also that the coupling between nearly degenerate modes has an
important effect on mode frequencies. The cubic effect are not very large;
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thus © as determined with the use of equation (137) agrees within a few
per cent with the true value.

Rotational coupling of nearly degenerate modes causes mixed angular
amplitude dependence for each of the modes. The relative contribution of
the ‘foreign’ spherical harmonic in each of the coupled modes is determined
by equation (150). This means, in particular, that there is no longer a pure
radial mode if there is a close [ = 2 mode. Chandrasekhar & Lebovitz
(1962) invoked this effect to explain excitation of nonradial oscillations in
b Cep stars. We now understand that nonradial modes are just as easily
excitable as radial ones. However, rotational coupling remains an important
and complicating effect which must be taken into account in connection
with mode identification in observed oscillation spectra.

5. Damping and driving of stellar oscillations

As discussed in the introduction, stellar oscillations may be induced in two
rather different manners: by being self-excited; or by being intrinsically
damped but externally forced, typically by convection. Here we establish
the basic framework for these processes.

5.1. SELF-EXCITED OSCILLATORS

Computation of the damping or excitation of linear modes requires treat-
ment of the full nonadiabatic set of oscillation equations, including the
energy equation as given by equations (40) and (41), with appropriate ex-
pressions for the perturbation in the energy-generation rate (eq. 42) and the
flux divergence. The resulting equations have complex coefficients, leading
to a complex eigenfrequency w = w; + tw; where w, and w; are the real
and imaginary parts of w. Thus the time dependence of the oscillations is
of the form

cos(wyt) exp(wit) . (151)

It follows that the mode is excited, or linearly unstable, when w; > 0, and
damped otherwise [this rather convenient feature is a second consequence
of our choice of sign convention in equation (49)].

Solution of the nonadiabatic equations directly leads to a determination
of w; and hence the stability of the mode. However, considerable more
insight into the physics of the driving can be obtained from an integral
expression for w;i. This may be derived from the perturbation expression in
equation (108) by noting that the full expression for the Eulerian pressure
perturbation, including the nonadiabatic terms, is

! ! dIn dIn iT3—1
gzrlp_+€r< p_rl p)-l-—3
P p dr dr w p

o(pe —divF), (152)



50 CHRISTENSEN-DALSGAARD AND DZIEMBOWSKI

as is easily seen from equations (40) and (41). Here the first two terms on the
right-hand side correspond to the adiabatic approximation, and hence are
included in the definition of the operator F(ér) in equation (106), whereas
the last term, arising from the nonadiabatic effects, may be considered as
a small perturbation. Substituting this into equation (108) and integrating
by parts, we obtain éw = wj, where
op* .
- (I's — 1)6(pe — div F)dV

P
i~ 1
YT o0 [, plor|2dV (153)

(note that since the eigenfunctions used to evaluate the integral may be
chosen to be real, so is the expression on the right-hand side of the equa-
tion).

Equation (153) has a very simple physical meaning: positive contri-
butions come from those parts of the star that are heated at maximum
compression, and where therefore 6p/p and é(pe — div F) have the same
sign. This is precisely the condition for extracting mechanical energy from
a Carnot heat engine. In fact, the term in é(pe) always contributes to the
driving since compression, for a (nearly) adiabatic oscillation, leads to an
increase in temperature and hence in the nuclear reaction rate. However, in
most cases this contribution is relatively unimportant. Thus the stability
of the star is decided by the, rather more complex, phase relations for the
flux divergence. Instability may result if substantial ‘bumps’ in the opacity
and its derivatives are located at the transition between nearly adiabatic,
and strongly nonadiabatic, pulsation.

As derived here, equation (153) is often known as the quasi-adiabatic
approzimation to the excitation rate, which is estimated from the adiabatic
eigenfunction. This approximation is often questionable, however: near the
surface the true nonadiabatic eigenfunctions deviate strongly from the adi-
abatic eigenfunctions, and hence the variational property of equation (106)
is no longer assured. Thus in practice reliable calculations of the excitation
rate requires solution of the nonadiabatic equations. Even so, a generalized
form of equation (153) may be derived and retains considerable value. In
fact, it is easy to show, by multiplying equation (50) by pdr*, integrating
over the volume of the star and taking the imaginary part that, to leading
order,

*
3 [ op (5pdV]
N 1 ‘f p
2wr fV p|6r|2dV
By using again the nonadiabatic expression for dp in terms of dp we es-
sentially recover equation (153). When evaluated with the computed non-
adiabatic eigenfunctions, this gives a very useful test of the accuracy of

wi ™~

(154)
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the excitation rate, obtained from the eigenfrequency; in addition, it shows
which regions dominate the driving and damping of the mode.

Equation (154) also illustrates the fundamental importance of the rel-
ative phase of pressure and density for the excitation or damping of the
mode. This is particularly significant when contributions other than the
thermodynamic pressure need to be taken into account. The most impor-
tant example is probably turbulent pressure, which may play an impor-
tant réle in the superficial parts of outer convection zones. Computation
of the perturbation of the turbulent pressure requires a model of the time-
dependent response of convection and hence is uncertain. On the basis of a
time-dependent generalization of mixing-length theory (Gough 1976, 1977),
Balmforth (1992a), Houdek (1996) and Houdek et al. (1999) found that the
perturbation in turbulent pressure makes a substantial contribution to the
stabilization of solar oscillations. A similar conclusion was reached by Nord-
lund & Stein (1998), on the basis of detailed hydrodynamical simulations
of the interaction between convection and pulsations in a model of the solar
convection zone.

5.2. STOCHASTIC EXCITATION

As mentioned above, stability calculations taking into account convection
generally find that the solar oscillations are linearly stable. This motivates
a search for driving mechanisms external to the oscillations, the most natu-
ral source being the very vigorous convection near the solar surface, where
motion at near-sonic speed may be expected to be a strong source of acous-
tic waves (Lighthill 1952; Stein 1967). Similar excitation should then occur
in other stars with near-surface convection. Since each mode feels the effect
of a very large number of turbulent eddies, acting at random, the combined
effect is that of a stochastic forcing of the mode.

Here we consider a very simple model of this process (Batchelor 1956;
see also Christensen-Dalsgaard, Gough & Libbrecht 1989), consisting of a
simple damped oscillator of amplitude A(?), forced by a random function
f(t), and hence satisfying the equation?

d?A dA
——— 22—t wiA = f(1); 155
here 5 is the linear damping rate, n = —w;. This equation is most eas-

ily dealt with in terms of its Fourier transform. We introduce the Fourier

* An equation of essentially this form may in fact be obtained from the full oscillation
equations, including the convective forcing, by projecting onto the eigenmodes.
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transforms A(w) and f(w) by

A(w) = / A dt,  f(w) = / FO)edt (156)

where we do not attempt to specify the limits of integration precisely. Ac-
cording to equation (155) A satisfies

—w?A = 2iqwA 4 wiA=f. (157)
By solving this equation, we obtain the power spectrum of the oscillator as

|f(w)l?

P(w) = |/I(w)|2 = (wg _ w2)2 + 4772‘/02 :

(158)

In the vicinity of the peak in the spectrum, where |w—wg| < wp the average
power of the oscillation is therefore given by

1 Pyw)
4wd (w—wp)2+ 72’

(P(w)) ~ (159)

where Pj(w) = (| f(w)[?) is the average power of the forcing function.

Since Pf(w) is often a slowly varying function of frequency, the fre-
quency dependence of (P(w)) is dominated by the denominator in equation
(159). The resulting profile is therefore approximately Lorentzian, with a
width determined by the linear damping rate 7. Consequently, under the
assumption of stochastic excitation one can make a meaningful comparison
between computed damping rates and observed line widths.

Kumar, Franklin & Goldreich (1988) made a careful statistical analysis
of this problem, taking also into account the finite duration of the obser-
vations used to determine the mode parameters. In the limit where the
observing time is short compared with the damping time n~!, the power,
or equivalently the mode energy F, is approximately exponentially dis-
tributed, with a distribution function

P(E) = exp(-E/(E)). (160)

A similar distribution, although with significant deviations at high energy,
was found by Chang & Gough (1998); strikingly, their results were very
similar to those obtained from analysis of solar data by Chaplin et al
(1997). Additional observational support for this excitation mechanism was
obtained very recently in the solar case by Gabriel et al. (1998) from analysis
of the auto-correlation of the p-mode velocity signal obtained from the
GOLF experiment on the SOHO spacecraft.
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Excitation by turbulent convection has been modelled using descrip-
tions of convection with varying degree of realism. In early calculations
using simple mixing-length theory, Goldreich & Keeley (1977) found an ap-
proximate equipartition between the energy in convection and the resulting
pulsations, the energy in one mode of oscillations being roughly equal to the
energy in one convective eddy of a timescale corresponding to the period
of the mode. Balmforth (1992b), Houdek (1996) and Houdek et al. (1999)
obtained rather similar results using a time-dependent mixing-length de-
scription of convection; they showed that the resulting amplitudes were not
inconsistent with those observed for the Sun. Furthermore, Nordlund &
Stein (1998) showed that in detailed hydrodynamical modelling the energy
input from convection was consistent with the energy requirements of the
solar oscillations.
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Appendix: The Cesme Resolution

In view of the fact

— that considerable and unnecessary confusion may arise from the lack
of a common definition of the sign convention for the azimuthal order
m in nonradial pulsation,

— that it is desirable to ensure that mode frequencies are increasing func-
tions of m as well as of the degree [ and the radial order n,

we hereby decree that the time dependence of nonradial pulsation, in terms
of their angular frequency w and time ¢, shall henceforth be expressed, on
complex form, as

exp(—iwt) ,

such that m is positive for prograde modes, i.e., modes travelling in the
direction of rotation.
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